Seeing plane partitions in Lie representation theory

A different approach to our counting problems

A summary

- Some general background information
 Algebras, representations, and tensor products
 - 2. $\mathfrak{sl}(2,\mathbb{C})$ and its representation theory The action on irreps V_n
 - How PPs appear in tensor products of representations
 "Modified" Kasteleyn-Percus
 - 4. Can we get back to our original KP matrices?

A vector space with an extra binary operation

A vector space with an extra binary operation

What's a Lie algebra?

A vector space with an extra binary operation

What's a Lie algebra?

$\mathfrak{sl}(2,\mathbb{C})$: 2×2 traceless matrices with complex entries

A vector space with an extra binary operation

What's a Lie algebra?

 $\mathfrak{sl}(2,\mathbb{C})$: 2×2 traceless matrices with complex entries

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

A vector space with an extra binary operation

What's a Lie algebra?

 $\mathfrak{sl}(2,\mathbb{C})$: 2×2 traceless matrices with complex entries

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$[A,B] = AB - BA$$

An action on a vector space ho:G imes V o V

An action on a vector space ho: G imes V o V

Example: 2×2 matrices represented by the plane

An action on a vector space $\rho: G \times V \to V$ Example: 2×2 matrices represented by the plane $GL(2,\mathbb{R}) \times \mathbb{R}^2 \to \mathbb{R}^2$

An action on a vector space $\rho: G \times V \to V$ Example: 2×2 matrices represented by the plane $GL(2,\mathbb{R}) \times \mathbb{R}^2 \to \mathbb{R}^2$ $\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \right)$

An action on a vector space $\rho: G \times V \to V$ Example: 2×2 matrices represented by the plane $GL(2,\mathbb{R}) \times \mathbb{R}^2 \to \mathbb{R}^2$ $\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \right) \mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$

An action on a vector space $\rho: G \times V \to V$ Example: 2×2 matrices represented by the plane $GL(2,\mathbb{R}) \times \mathbb{R}^2 \to \mathbb{R}^2$ $\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \right) \mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$

 $\alpha: G \to GL(V)$

An action on a vector space $\rho: G \times V \to V$ Example: 2×2 matrices represented by the plane $GL(2, \mathbb{R}) \times \mathbb{R}^2 \to \mathbb{R}^2$ $\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \right) \mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$ $\alpha: G \to GL(V) \qquad \alpha(gh) = \alpha(g)\alpha(h)$

An action on a vector space ho: G imes V o VExample: 2×2 matrices represented by the plane $GL(2,\mathbb{R}) \times \mathbb{R}^2 \to \mathbb{R}^2$ $\left(\begin{vmatrix} a & b \\ c & d \end{vmatrix}, \begin{vmatrix} x \\ y \end{vmatrix} \right) \longmapsto \begin{vmatrix} a & b \\ c & d \end{vmatrix} \cdot \begin{vmatrix} x \\ y \end{vmatrix} \in \mathbb{R}^2$ $\alpha: G \to GL(V)$ $\alpha(gh) = \alpha(g)\alpha(h)$ $GL(2,\mathbb{R}) \to GL(2,\mathbb{R})$

An action on a vector space ho: G imes V o VExample: 2×2 matrices represented by the plane $GL(2,\mathbb{R})\times\mathbb{R}^2\to\mathbb{R}^2$ $\left(\begin{vmatrix} a & b \\ c & d \end{vmatrix}, \begin{vmatrix} x \\ y \end{vmatrix} \right) \quad \mapsto \begin{vmatrix} a & b \\ c & d \end{vmatrix} \cdot \begin{vmatrix} x \\ y \end{vmatrix} \in \mathbb{R}^2$ $\alpha: G \to GL(V)$ $\alpha(gh) = \alpha(g)\alpha(h)$ $GL(2,\mathbb{R}) \to GL(2,\mathbb{R})$ $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \mapsto \begin{vmatrix} a & b \\ c & d \end{vmatrix}$

Irreducible representations (irreps): no subreps

Irreducible representations (irreps): no subreps $W \subseteq V$ closed under the action

Irreducible representations (irreps): no subreps $W \subseteq V$ closed under the action (i.e. an invariant subspace!)

First: a bilinear map on $\,A \times B\,$

First: a bilinear map on $A \times B$

$$f(\lambda a, b) = \lambda f(a, b) = f(a, \lambda b)$$

First: a bilinear map on $A \times B$

$$f(\lambda a, b) = \lambda f(a, b) = f(a, \lambda b)$$

$$f(a + b, c) = f(a, c) + f(b, c) \text{ etc.}$$

First: a bilinear map on
$$A \times B$$

 $f(\lambda a, b) = \lambda f(a, b) = f(a, \lambda b)$
 $f(a + b, c) = f(a, c) + f(b, c)$ etc.
e.g. multiplication $f(a, b) = ab$
First: a bilinear map on
$$A \times B$$

 $f(\lambda a, b) = \lambda f(a, b) = f(a, \lambda b)$
 $f(a + b, c) = f(a, c) + f(b, c)$ etc.
e.g. multiplication $f(a, b) = ab$

 $V\otimes W$

First: a bilinear map on
$$A \times B$$

 $f(\lambda a, b) = \lambda f(a, b) = f(a, \lambda b)$
 $f(a + b, c) = f(a, c) + f(b, c)$ etc.

e.g. multiplication f(a, b) = ab

 $V\otimes W \quad \{v\otimes w\}$

First: a bilinear map on
$$A \times B$$

 $f(\lambda a, b) = \lambda f(a, b) = f(a, \lambda b)$
 $f(a + b, c) = f(a, c) + f(b, c)$ etc.
e.g. multiplication $f(a, b) = ab$
 $\dim(V \otimes W) = \dim V \dim W$
 $V \otimes W \quad \{v \otimes w\}$

First: a bilinear map on
$$A \times B$$

$$f(\lambda a, b) = \lambda f(a, b) = f(a, \lambda b)$$

$$f(a + b, c) = f(a, c) + f(b, c) \text{ etc.}$$
e.g. multiplication $f(a, b) = ab$

$$\dim(V \otimes W) = \dim V \dim W$$

$$V \otimes W \quad \{v \otimes w\}$$

$$av \otimes w = v \otimes aw$$

$$(u + v) \otimes w = u \otimes w + v \otimes w \text{ etc.}$$

First: a bilinear map on
$$A \times B$$

 $f(\lambda a, b) = \lambda f(a, b) = f(a, \lambda b)$
 $f(a + b, c) = f(a, c) + f(b, c)$ etc.
e.g. multiplication $f(a, b) = ab$
 $\dim(V \otimes W) = \dim V \dim W$
 $V \otimes W \quad \{v \otimes w\}$ V
 $av \otimes w = v \otimes aw$
 $(u + v) \otimes w = u \otimes w + v \otimes w$ etc.

 $\times W \xrightarrow{\varphi} V \otimes W$

First: a bilinear map on
$$A \times B$$

 $f(\lambda a, b) = \lambda f(a, b) = f(a, \lambda b)$
 $f(a + b, c) = f(a, c) + f(b, c)$ etc.
e.g. multiplication $f(a, b) = ab$
 $\dim(V \otimes W) = \dim V \dim W$ $(v, w) \mapsto v \otimes w$
 $V \otimes W \quad \{v \otimes w\}$ $V \times W \xrightarrow{\varphi} V \otimes W$
 $av \otimes w = v \otimes aw$
 $(u + v) \otimes w = u \otimes w + v \otimes w$ etc.

First: a bilinear map on
$$A \times B$$

$$f(\lambda a, b) = \lambda f(a, b) = f(a, \lambda b)$$

$$f(a + b, c) = f(a, c) + f(b, c) \text{ etc.}$$
e.g. multiplication $f(a, b) = ab$

$$\dim(V \otimes W) = \dim V \dim W$$

$$V \otimes W \quad \{v \otimes w\}$$

$$av \otimes w = v \otimes aw$$

$$(u + v) \otimes w = u \otimes w + v \otimes w \text{ etc.}$$

$$V \otimes W$$

First: a bilinear map on
$$A \times B$$

 $f(\lambda a, b) = \lambda f(a, b) = f(a, \lambda b)$
 $f(a + b, c) = f(a, c) + f(b, c)$ etc.
e.g. multiplication $f(a, b) = ab$
 $\dim(V \otimes W) = \dim V \dim W$
 $V \otimes W \quad \{v \otimes w\}$
 $av \otimes w = v \otimes aw$
 $(u + v) \otimes w = u \otimes w + v \otimes w$ etc.
 $(v, w) \mapsto v \otimes w$
 $V \times W \xrightarrow{\varphi} V \otimes W$
 $h \xrightarrow{\downarrow} \tilde{h}$
 χ

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

[A, B] = AB - BA

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

[A,B] = AB - BA

Two nice facts:

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$[A, B] = AB - BA$$

Two nice facts:

1. Any rep decomposes into a direct sum of irreps

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$[A, B] = AB - BA$$

Two nice facts:

- 1. Any rep decomposes into a direct sum of irreps
- 2. The irreps are classified by \mathbb{N} ;

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$[A, B] = AB - BA$$

Two nice facts:

- 1. Any rep decomposes into a direct sum of irreps
- 2. The irreps are classified by \mathbb{N} ; i.e. for all n there's a unique irrep V_n of dim n+1

e.g.
$$V_4$$
 has basis x^4 x^3y x^2y^2 xy^3 y^4

 V_n is the space of homogeneous polynomials of degree n in two variables

e.g.
$$V_4$$
 has basis x^4 x^3y x^2y^2 xy^3 y^4

 V_n is the space of homogeneous polynomials of degree n in two variables

e.g.
$$V_4$$
 has basis x^4 x^3y x^2y^2 xy^3 y^4

$$\alpha(X) = x \frac{\partial}{\partial y}$$

 V_n is the space of homogeneous polynomials of degree n in two variables

e.g.
$$V_4$$
 has basis x^4 x^3y x^2y^2 xy^3 y^4

$$\alpha(X) = x \frac{\partial}{\partial y} \qquad \alpha(Y) = y \frac{\partial}{\partial x}$$

 V_n is the space of homogeneous polynomials of degree n in two variables

e.g.
$$V_4$$
 has basis x^4 x^3y x^2y^2 xy^3 y^4

$$\alpha(X) = x \frac{\partial}{\partial y} \qquad \alpha(Y) = y \frac{\partial}{\partial x} \qquad \alpha(H) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$$

e.g.
$$V_4$$
 has basis x^4 x^3y x^2y^2 xy^3 y^4

The action of
$$\mathfrak{sl}(2, \mathbb{C})$$
 $\alpha(X) = x \frac{\partial}{\partial y}$ $\alpha(Y) = y \frac{\partial}{\partial x}$ $\alpha(H) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$ $x^a y^b$ $(x^a y^b)$ $(x^a y^b)$

e.g.
$$V_4$$
 has basis x^4 x^3y x^2y^2 xy^3 y^4

The action of
$$\mathfrak{sl}(2,\mathbb{C})$$
 $\alpha(X) = x \frac{\partial}{\partial y}$ $\alpha(Y) = y \frac{\partial}{\partial x}$ $\alpha(H) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$ $x^a y^b$ $bx^{a+1}y^{b-1}$ $bx^{a+1}y^{b-1}$

e.g.
$$V_4$$
 has basis x^4 x^3y x^2y^2 xy^3 y^4

The action of
$$\mathfrak{sl}(2, \mathbb{C})$$
 $\alpha(X) = x \frac{\partial}{\partial y}$ $\alpha(Y) = y \frac{\partial}{\partial x}$ $\alpha(H) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$ $x^a y^b$ $bx^{a+1}y^{b-1}$ $ax^{a-1}y^{b+1}$

e.g.
$$V_4$$
 has basis x^4 x^3y x^2y^2 xy^3 y^4

The action of
$$\mathfrak{sl}(2,\mathbb{C})$$
 $\alpha(X) = x \frac{\partial}{\partial y}$ $\alpha(Y) = y \frac{\partial}{\partial x}$ $\alpha(H) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$ $x^a y^b$ $bx^{a+1}y^{b-1}$ $ax^{a-1}y^{b+1}$ $(a-b)x^a y^b$

e.g.
$$V_4$$
 has basis x^4 x^3y x^2y^2 xy^3 y^4

The action of
$$\mathfrak{sl}(2, \mathbb{C})$$
 $\alpha(X) = x \frac{\partial}{\partial y}$ $\alpha(Y) = y \frac{\partial}{\partial x}$ $\alpha(H) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$ $x^a y^b$ $bx^{a+1}y^{b-1}$ $ax^{a-1}y^{b+1}$ $(a-b)x^a y^b$

 V_n is the space of homogeneous polynomials of degree n in two variables

e.g.
$$V_4$$
 has basis x^4 x^3y x^2y^2 xy^3 y^4 X

A

The action of
$$\mathfrak{sl}(2, \mathbb{C})$$
 $\alpha(X) = x \frac{\partial}{\partial y}$ $\alpha(Y) = y \frac{\partial}{\partial x}$ $\alpha(H) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$ $x^a y^b$ $bx^{a+1}y^{b-1}$ $ax^{a-1}y^{b+1}$ $(a-b)x^a y^b$

e.g.
$$V_4$$
 has basis x^4 x^3y x^2y^2 xy^3 y^4 X

The action of
$$\mathfrak{sl}(2, \mathbb{C})$$
 $\alpha(X) = x \frac{\partial}{\partial y}$ $\alpha(Y) = y \frac{\partial}{\partial x}$ $\alpha(H) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$ $x^a y^b$ $bx^{a+1}y^{b-1}$ $ax^{a-1}y^{b+1}$ $(a-b)x^a y^b$

e.g.
$$V_4$$
 has basis x^4 x^3y x^2y^2 xy^3 y^4 X

The action of
$$\mathfrak{sl}(2, \mathbb{C})$$
 $\alpha(X) = x \frac{\partial}{\partial y}$ $\alpha(Y) = y \frac{\partial}{\partial x}$ $\alpha(H) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$ $x^a y^b$ $bx^{a+1}y^{b-1}$ $ax^{a-1}y^{b+1}$ $(a-b)x^a y^b$

e.g.
$$V_4$$
 has basis x^4 x^3y x^2y^2 xy^3 y^4 X

The action of
$$\mathfrak{sl}(2, \mathbb{C})$$
 $\alpha(X) = x \frac{\partial}{\partial y}$ $\alpha(Y) = y \frac{\partial}{\partial x}$ $\alpha(H) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$ $x^a y^b$ $bx^{a+1}y^{b-1}$ $ax^{a-1}y^{b+1}$ $(a-b)x^a y^b$

The action of
$$\mathfrak{sl}(2, \mathbb{C})$$
 $\alpha(X) = x \frac{\partial}{\partial y}$ $\alpha(Y) = y \frac{\partial}{\partial x}$ $\alpha(H) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$ $x^a y^b$ $bx^{a+1}y^{b-1}$ $ax^{a-1}y^{b+1}$ $(a-b)x^a y^b$

 V_n is the space of homogeneous polynomials of degree n in two variables

e.g. V_4 has basis x^4 x^3y x^2y^2 xy^3 y^4 The action of $\mathfrak{sl}(2,\mathbb{C})$ $\alpha(X) = x \frac{\partial}{\partial y} \quad | \quad \alpha(Y) = y \frac{\partial}{\partial x} \quad | \quad \alpha(H) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$ $bx^{a+1}y^{b-1}$ $x^a y^b$ $ax^{a-1}y^{b+1}$ $(a-b)x^ay^b$

e.g.
$$V_4$$
 has basis

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}$$
\left(\begin{array}{c}
\end{array} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\bigg{)}
\end{array} \\
\end{array} \\
\bigg{)}
\end{array} \\
\end{array} \\
\bigg{)}
\end{array} \\
\end{array} \\
\bigg{)} \\
\end{array} \\
\bigg{)} \\
\end{array} \\
\bigg{)} \\
\end{array} \\
\bigg{)} \\
\end{array} \\
\end{array} \\
\bigg{)} \\
\end{array} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\bigg{)} \\
\end{array} \\
\bigg{)} \\
\end{array} \\
\bigg{)} \\
\end{array}
\left(\end{array} \\
\bigg{)} \\
\bigg

How do plane partitions come in?

How do plane partitions come in?

 $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$

How do plane partitions come in?

 $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$ e.g. $V_4 \otimes V_3$
How do plane partitions come in? $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$ $y^4 \qquad xy^3 \qquad x^2y^2 \qquad x^3y \qquad x^4$ e.g. $V_4 \otimes V_3$ x^3 x^2y xy^2 y^3

e.g. $V_4 \otimes V_3$

 $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$

How do plane partitions come in? $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$ e.g. $V_4 \otimes V_3$ $y^4 \quad xy^3 \quad x^2y^2$

 $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$

e.g. $V_4 \otimes V_3$

How do plane partitions come in? $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$ y^4 xy^3 x^2y^2 x^3y x^4 e.g. $V_4 \otimes V_3$ x^3 $\alpha(X)(x^3 \otimes y^4)$ x^2y +1 xy^2

 y^3

How do plane partitions come in? $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$ $y^4 \qquad xy^3 \qquad x^2y^2 \qquad x^3y \qquad x^4$ e.g. $V_4 \otimes V_3$ x^3 $\alpha(X)(x^3 \otimes y^4)$ x^2y +1

 xy^2

 y^3

How do plane partitions come in? $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$ $y^4 \qquad xy^3 \qquad x^2y^2 \qquad x^3y$ x^4 e.g. $V_4 \otimes V_3$ x^3 $\alpha(X)(x^3 \otimes y^4)$ x^2y +1 $= \alpha(X)x^3 \otimes y^4$ $+x^3 \otimes \alpha(X)y^4$ xy^2 y^3

How do plane partitions come in? $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$ $y^4 \qquad xy^3 \qquad x^2y^2 \qquad x^3y$ x^4 e.g. $V_4 \otimes V_3$ x^3 $\alpha(X)(x^3 \otimes y^4)$ x^2y +1 $= \alpha(X)x^3 \otimes y^4$ $+x^3 \otimes \alpha(X)y^4$ xy^2 $= 0 \otimes y^4 + x^3 \otimes 4xy^3$ y^3

How do plane partitions come in? $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$ x^4 $y^4 \qquad xy^3 \qquad x^2y^2 \qquad x^3y$ e.g. $V_4 \otimes V_3$ x^3 $\alpha(X)(x^3 \otimes y^4)$ x^2y +1 $= \alpha(X)x^3 \otimes y^4$ $+x^3 \otimes \alpha(X)y^4$ xy^2 $= 0 \otimes y^4 + x^3 \otimes 4xy^3$ y^3 $= x^3 \otimes 4xy^3$

 $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$

e.g. $V_4 \otimes V_3$

How do plane partitions come in? $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \operatorname{id} + \operatorname{id} \otimes \beta(X)$ e.g. $V_4 \otimes V_3$ $y^4 \quad xy^3 \quad x^2y^2 \quad x^3y$ $x^3 \quad 4$

 $\alpha(X)(x^2y\otimes xy^3)$

 $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$

e.g. $V_4 \otimes V_3$

How do plane partitions come in? $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$ y^4 xy^3 x^2y^2 x^3y x^4 e.g. $V_4 \otimes V_3$ x^3 $\alpha(X)(x^2y\otimes xy^3)$ x^2y +1 $= x^3 \otimes xy^3 + x^2y \otimes 3x^2y^2$ xy^2 y^3

How do plane partitions come in? $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$ xy^3 x^2y^2 x^3y y^4 x^4 e.g. $V_4 \otimes V_3$ x^3 1 $\alpha(X)(x^2y\otimes xy^3)$ x^2y +1 $= x^3 \otimes xy^3 + x^2y \otimes 3x^2y^2$ xy^2

 y^3

 $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$

e.g. $V_4 \otimes V_3$

How do plane partitions come in? $(\alpha \otimes \beta)(X) = \alpha(X) \otimes \mathrm{id} + \mathrm{id} \otimes \beta(X)$ y^4 xy^3 x^2y^2 x^3y x^4 e.g. $V_4 \otimes V_3$ x^3 1 x^2y +1 $\begin{array}{cccc} 4 & 1 & & \\ & 3 & 2 & \\ & & 2 & 3 \end{array}$ 2 xy^2 2 3 y^3 1

e.g. $V_4 \otimes V_4 \otimes V_5$

e.g. $V_4 \otimes V_4 \otimes V_5$ It's a $2 \times 2 \times 3$ plane partition graph!

For an $a \times b \times c$ plane partition, we have

For an $a \times b \times c$ plane partition, we have

 $V_{b+c-1} \otimes V_{a+c-1} \otimes V_{a+b-1}$

For an $a \times b \times c$ plane partition, we have

$$V_{b+c-1} \otimes V_{a+c-1} \otimes V_{a+b-1}$$

Clebsch-Gordan: $V_a \otimes V_b \cong V_{a+b} \oplus V_{a+b-2} \oplus \ldots \oplus V_{a-b}$

For an $a \times b \times c$ plane partition, we have

$$V_{b+c-1} \otimes V_{a+c-1} \otimes V_{a+b-1}$$

Clebsch-Gordan: $V_a \otimes V_b \cong V_{a+b} \oplus V_{a+b-2} \oplus \ldots \oplus V_{a-b}$

 \Longrightarrow A diagonalized matrix for the action of ~X

For an $a \times b \times c$ plane partition, we have

$$V_{b+c-1} \otimes V_{a+c-1} \otimes V_{a+b-1}$$

Clebsch-Gordan: $V_a \otimes V_b \cong V_{a+b} \oplus V_{a+b-2} \oplus \ldots \oplus V_{a-b}$

 \Longrightarrow A diagonalized matrix for the action of ~X

 \implies A determinant: the solution to our counting problem!

Kasteleyn cokernel	Modified cokernel
	Kasteleyn cokernel

Plane partition	Kasteleyn cokernel	Modified cokernel
$2 \times 2 \times 2$		
$2 \times 2 \times 3$		

Plane partition	Kasteleyn cokernel	Modified cokernel
$2 \times 2 \times 2$	$\mathbb{Z}/2\oplus\mathbb{Z}/10$	
$2 \times 2 \times 3$	$\mathbb{Z}/5\oplus\mathbb{Z}/10$	

Plane partition	Kasteleyn cokernel	Modified cokernel
$2 \times 2 \times 2$ $2 \times 2 \times 3$	$\mathbb{Z}/2 \oplus \mathbb{Z}/10$ $\mathbb{Z}/5 \oplus \mathbb{Z}/10$	$(\mathbb{Z}/2)^3 \oplus \mathbb{Z}/6 \oplus \mathbb{Z}/12 \oplus \mathbb{Z}/60$ $(\mathbb{Z}/2)^3 \oplus (\mathbb{Z}/6)^2 \oplus \mathbb{Z}/12 \oplus (\mathbb{Z}/60)^2$
Getting back to our "original" Kasteleyn cokernel

Our Clebsch-Gordan was over \mathbb{C} ...

Our Clebsch-Gordan was over \mathbb{C} ...

But our cokernel needs to be over \mathbb{Z} !

Our Clebsch-Gordan was over \mathbb{C} ...

But our cokernel needs to be over \mathbb{Z} !

Enter . . .

Our Clebsch-Gordan was over \mathbb{C} ...

But our cokernel needs to be over \mathbb{Z} !

Enter... $\mathfrak{sl}(2,\mathbb{Z})$

Our Clebsch-Gordan was over \mathbb{C} ...

But our cokernel needs to be over \mathbb{Z} !

Enter...
$$\mathfrak{sl}(2,\mathbb{Z})$$

Does it have a version of Clebsch-Gordan?

 V_n tensor products don't decompose the same way...

e.g. $V_1\otimes V_2$

 V_n tensor products don't decompose the same way...

e.g. $V_1 \otimes V_2$

e.g.
$$V_1 \otimes V_2$$
 id: $e_1 \otimes e_2$
 $\alpha(Y)$: $e_{-1} \otimes e_2 + 2e_1 \otimes e_0$

e.g.
$$V_1 \otimes V_2$$

 $e.g. V_1 \otimes V_2$
 $a(Y): e_{-1} \otimes e_2 + 2e_1 \otimes e_0$
 $a(Y^2): 4e_{-1} \otimes e_0 + 4e_1 \otimes e_{-2}$
 $e_1 \quad \bullet \quad \bullet$
 $e_{-1} \quad \bullet \quad \bullet$

e.g.
$$V_1 \otimes V_2$$

 $e.g. V_1 \otimes V_2$
 $a(Y): e_{-1} \otimes e_2 + 2e_1 \otimes e_0$
 $a(Y^2): 4e_{-1} \otimes e_0 + 4e_1 \otimes e_{-2}$
 $a(Y^3): 12e_{-1} \otimes e_{-2}$

e.g.
$$V_1 \otimes V_2$$

 $e_{-2} e_0 e_2$
 $e_{-1} \bullet \bullet \bullet$
 $e_{-1} \bullet \bullet \bullet \bullet$
 $id: e_1 \otimes e_2$
 $\alpha(Y^2): e_{-1} \otimes e_0 + 4e_1 \otimes e_{-2}$
 $\alpha(Y^3): 12e_{-1} \otimes e_{-2}$
 $A: = \langle a, b + 2c, 4(d + e), 12f \rangle$

e.g.
$$V_1 \otimes V_2 \cong V_3 \oplus V_1$$
?
 $e_{-2} e_0 e_2$
 $e_{-1} \bullet \bullet \bullet$
 $e_{-1} \bullet \bullet \bullet$
 $e_{-1} \bullet \bullet \bullet \bullet \bullet$
 $A:= \langle a, b + 2c, 4(d + e), 12f \rangle$

e.g.
$$V_1 \otimes V_2 \cong V_3 \oplus V_1$$
?
 $e_{-2} \otimes e_{0} \otimes e_{2}$
 $e_{-1} \otimes e_{-2} \otimes e_{0} \otimes e_{2}$
 $e_{-1} \otimes e_{-1} \otimes e_{-2}$
 $e_{-1} \otimes e_{-1} \otimes e_{-2}$
 $A := \langle a, b + 2c, 4(d + e), 12f \rangle$
 $\cong V_3$?
id: $e_1 \otimes e_2$
 $\alpha(Y^2): e_{-1} \otimes e_2 + 2e_1 \otimes e_0$
 $\alpha(Y^2): 4e_{-1} \otimes e_0 + 4e_1 \otimes e_{-2}$
 $\alpha(Y^3): 12e_{-1} \otimes e_{-2}$

$$A := \langle a, b + 2c, 4(d + e), 12f \rangle \text{ in } \mathbb{Z}^6$$

$$A := \langle a, b + 2c, \frac{4(d+e)}{2}, 12f \rangle$$
 in \mathbb{Z}^6

 $A := \langle a, b + 2c, \frac{4(d+e)}{2}, 12f \rangle$ in \mathbb{Z}^{6}

 $A := \langle a, b + 2c, \frac{4(d+e)}{2}, 12f \rangle$ in \mathbb{Z}^{6}

 $A := \langle a, b + 2c, \frac{4(d+e)}{2}, 12f \rangle \text{ in } \mathbb{Z}^6$

 $\langle 4(d+e)\rangle \oplus ? \cong \mathbb{Z}^2$

 $A := \langle a, b + 2c, \frac{4(d+e)}{2}, 12f \rangle \text{ in } \mathbb{Z}^6$

 $\langle 4(d+e)\rangle \oplus ? \cong \mathbb{Z}^2$

 $A := \langle a, b + 2c, \frac{4(d+e)}{2}, 12f \rangle \text{ in } \mathbb{Z}^6$

 $\langle 4(d+e)\rangle \oplus ? \cong \mathbb{Z}^2$

 $A := \langle a, b + 2c, \frac{4(d+e)}{2}, 12f \rangle \text{ in } \mathbb{Z}^6$

 $\langle 4(d+e)\rangle \oplus ? \cong \mathbb{Z}^2$

 $A := \langle a, b + 2c, \frac{4(d+e)}{2}, 12f \rangle \text{ in } \mathbb{Z}^6$

 $\langle 4(d+e)\rangle \oplus ? \cong \mathbb{Z}^2$
$A:=\langle a,b+2c, \frac{4(d+e)}{2}, 12f \rangle$ in \mathbb{Z}^6

 $\langle 4(d+e)\rangle \oplus ? \cong \mathbb{Z}^2$

It doesn't work...

 $A := \langle a, b + 2c, \frac{4(d+e)}{2}, 12f \rangle \text{ in } \mathbb{Z}^6$

 $\langle 4(d+e)\rangle \oplus ? \cong \mathbb{Z}^2$

It doesn't work...

Take the "divisor-closure"!

 $A := \langle a, b + 2c, \frac{4(d+e)}{2}, 12f \rangle \text{ in } \mathbb{Z}^6$

 $\langle 4(d+e)\rangle \oplus ? \cong \mathbb{Z}^2$

It doesn't work...

Take the "divisor-closure"!

 $A := \langle a, b + 2c, \frac{4(d+e)}{2}, 12f \rangle \text{ in } \mathbb{Z}^6$

 $\langle 4(d+e)\rangle \oplus ? \cong \mathbb{Z}^2$

It doesn't work...

Take the "divisor-closure"!

 $A := \langle a, b + 2c, \frac{4(d+e)}{2}, 12f \rangle$ in \mathbb{Z}^{6}

$$\langle d+e\rangle\oplus\langle d\rangle\cong\mathbb{Z}^2$$

It doesn't work...

Take the "divisor-closure"!

$$A{:}=\langle a,b+2c,4(d+e),12f
angle$$
 in \mathbb{Z}^6

Take the divisor-closure:

$$A{:}=\langle a,b+2c,4(d+e),12f
angle$$
 in \mathbb{Z}^6

Take the divisor-closure:

 $(A\otimes \mathbb{Q})\cap \mathbb{Z}^n$ is complemented, and a subrep...

$$A{:}=\langle a,b+2c,4(d+e),12f
angle$$
 in \mathbb{Z}^6

Take the divisor-closure:

 $(A\otimes \mathbb{Q})\cap \mathbb{Z}^n$ is complemented, and a subrep...

But is its complement a subrep?

$$A{:}=\langle a,b+2c,4(d+e),12f\rangle$$
 in \mathbb{Z}^6

Take the divisor-closure:

 $(A\otimes \mathbb{Q})\cap \mathbb{Z}^n$ is complemented, and a subrep...

But is its complement a subrep?

Often not!

$$A{:}=\langle a,b+2c,4(d+e),12f\rangle \ \text{ in } \mathbb{Z}^6$$

Take the divisor-closure:

 $(A\otimes \mathbb{Q})\cap \mathbb{Z}^n$ is complemented, and a subrep...

But is its complement a subrep?

Often not!

Something to look at...

 $V_1 \otimes V_2$

 $V_1 \otimes V_2$

Divisor-enclosed enlargements of V_3 , V_1 in $V_1 \otimes V_2$:

 $V_1 \otimes V_2$

Divisor-enclosed enlargements of V_3 , V_1 in $V_1 \otimes V_2$:

 V'_3, V'_1

 $V_1 \otimes V_2$

Divisor-enclosed enlargements of $V_3, \ V_1$ in $\ V_1 \otimes V_2$: $V_3', \ V_1'$

Consider:

 $V_1 \otimes V_2$

Divisor-enclosed enlargements of V_3 , V_1 in $V_1 \otimes V_2$:

 V'_3, V'_1

Consider:

 $\mathbb{Z}^6/(V_3'\oplus V_1')$

 $V_1 \otimes V_2$

Divisor-enclosed enlargements of V_3 , V_1 in $V_1 \otimes V_2$:

 V'_{3}, V'_{1}

Consider:

$$\mathbb{Z}^6/(V_3'\oplus V_1')$$

What kind of object does this form?

 $V_1 \otimes V_2$

Divisor-enclosed enlargements of V_3 , V_1 in $V_1 \otimes V_2$:

 V'_{3}, V'_{1}

Consider:

$$\mathbb{Z}^6/(V_3'\oplus V_1')\cong (\mathbb{Z}/3)^2$$

What kind of object does this form?

Thanks!