Sum and Product Games

Longest Chains and Other Counts

Mariam Abu-Adas, Nila Cibu, Sherry Shen Professor Eric Babson July 29 2022

UC Davis

- 1. Set Up
- 2. Longest Chains
- 3. Counting
- 4. Probability

Set Up

- G(n): Graph with max value n
- $V_p(n)$: Product nodes in G(n)
- $V_s(n)$: Sum nodes in G(n)
- d(V(n)): Degree of node in G(n)
- $V_{p,d=3}(n)$: Condition on node (degree is equal to 3).

Figure 1: n = 10

Figure 2: Number of edges = $\frac{n(n-1)}{2}$

Figure 3: Degree of sum node = min $\left(n - \left\lceil \frac{V_s}{2} \right\rceil + 1, \left\lfloor \frac{V_s}{2} \right\rfloor - 1\right)$

Figure 4: Degree of product node =
$$\left\lceil \frac{\prod_{i=1}^{m} (a_i+1)}{2} \right\rceil$$

Number of edges :
$$\binom{n-1+2-1}{2} = \frac{n(n-1)}{2}$$

Degree of sum node : min
$$\left(n - \left\lceil \frac{V_s}{2} \right\rceil + 1, \left\lfloor \frac{V_s}{2} \right\rfloor - 1\right)$$

Final degree of product node $: V_p = p_1^{a_1} p_2^{a_2} \dots p_m^{a_m}$

$$d(V_p) = \left\lceil \frac{\prod_{i=1}^m (a_i + 1)}{2} \right\rceil$$

Longest Chains

What is the longest possible chain length in G(n) for a given nWhat is the maximum chain length in G(n) for ANY n?

Figure 5: n = 36

Figure 6: n = 99

n	max		n	max		n	max	n	max
10	7	1	23	6	1	36	13	49	7
11	7		24	6		37	13	50	6
12	7		25	9		38	11	51	6
13	7		26	6		39	6	52	6
14	6		27	6		40	6	53	6
15	6		28	6		41	6	54	6
16	6		29	6		42	6	55	6
17	6		30	6		43	6	56	6
18	6		31	6		44	6	57	7
19	6		32	8		45	6	58	7
20	6		33	6		46	6	59	7
21	7		34	6		47	6	60	6
22	6		35	6		48	6	61	6

n	max		n	max	n	max	n	max
10	7	1	23	6	36	13	49	7
11	7		24	6	37	13	50	6
12	7		25	9	38	11	51	6
13	7		26	6	39	6	52	6
14	6		27	6	40	6	53	6
15	6		28	6	41	6	54	6
16	6		29	6	42	6	55	6
17	6		30	6	43	6	56	6
18	6		31	6	44	6	57	7
19	6		32	8	45	6	58	7
20	6		33	6	46	6	59	7
21	7		34	6	47	6	60	6
22	6		35	6	48	6	61	6

n	max	n	max	n	max	n	max
10	7	23	6	36	13	49	7
11	7	24	6	37	13	50	6
12	7	25	9	38	11	51	6
13	7	26	6	39	6	52	6
14	6	27	6	40	6	53	6
15	6	28	6	41	6	54	6
16	6	29	6	42	6	55	6
17	6	30	6	43	6	56	6
18	6	31	6	44	6	57	7
19	6	32	8	45	6	58	7
20	6	33	6	46	6	59	7
21	7	34	6	47	6	60	6
22	6	35	6	48	6	61	6

This is the only permanent chain at small product nodes, length is 6

Why are Odds Frequent?

Other than the 6 chain, all but 3 graphs (for $10 \le n \le 1000$) have odd lengths.

A chain is even if it starts with a product

Conditions to Start a Chain

Goal: find the probability that start of a chain is a product versus a sum.

Conditions to start a chain:

Node is on the *edge* of the graph $(V_s(n) \ge 2n - k\sqrt{n})$

Degree at least 3

At least 3 neighbors of the node must have degree at least 2

In order to calculate the probabilities we need the following:

Total number of sum nodes Distribution of degrees in sum nodes Total number of product nodes Distribution of degrees in product nodes

Counting

Every sum from 4 to 2n is achievable as a sum in G(n)

Thus:

$$|V_{\rm s}(n)|=2n-3$$

Possible degrees of sum nodes: $1, 2, \ldots \lfloor \frac{n}{2} \rfloor$

Frequency of each degree: For all but highest degree, 4 nodes of each degree occur.

Product nodes range from 4 to *n*²

Unachievable product nodes (n=10):

Primes less then *n*

Unachievable product nodes (n=10):

Primes less then nPrimes between n and n^2

Unachievable product nodes (n=10):

Primes less then *n*

Primes between *n* and n^2

All multiples of primes between n and n^2

Product nodes range from 4 to n^2

Unachievable product nodes (n=10):

Primes less then n (eg. 1 * 5)

Primes between n and n^2 (eg. 1 * 17)

All multiples of primes between n and n^2

Three primes such that each partitioning results in an element larger than *n*

Product nodes range from 4 to n^2

Unachievable product nodes (n=10):

Primes less then n (eg. 1 * 5)

Primes between n and n^2 (eg. 1 * 17)

All multiples of primes between n and n^2

Three primes such that each partitioning results in an element larger than *n*

Four primes????

If $\omega(n)$ is number of distinct prime factors of *n*, then the probability distribution is:

 $\frac{\omega(n) - \log \log(n)}{\sqrt{\log \log n}}$

n will have an average of 4 distinct primes when *n* = 1,000,000,000,000,000,000,000 We wish to estimate the number of unachievable nodes:

1. Primes less than n

We know the the density of primes less than n is $\frac{1}{\ln n}$

We know the number of primes less than *n* can be approximated by:

$$\pi(n) = \frac{n}{\ln n}$$

We wish to estimate the number of unachievable nodes:

2 and 3. Primes and multiples between n and n^2

To find all primes and their multiples between n and n^2 , we solve:

$$\int_{n}^{n^{2}} \frac{1}{\ln p} * \frac{n^{2}}{p} dp = n^{2} (\ln 2)$$

Total Number of Product Nodes

We wish to estimate the number of unachievable nodes:

4. Product of 3 primes between 2 and n

We want 3 primes *x*, *y*, *z* such that:

$$xyz \le n^2$$
 $xy > n$

$$xz > n$$
 $yz > n$

We take the natural log of everything:

$$\tilde{x} + \tilde{y} + \tilde{z} \le 2\tilde{n}$$
 $\tilde{x} + \tilde{y} > \tilde{n}$

$$\tilde{x} + \tilde{z} > \tilde{n}$$
 $\tilde{y} + \tilde{z} > \tilde{n}$

Total Number of Product Nodes

We wish to estimate the number of unachievable nodes:

4. Product of 3 primes between 2 and n

Solution to system of linear equations:

We wish to estimate the number of unachievable nodes:

4. Product of 3 primes between 2 and n

To count the number of triples *x*, *y*, *z* that satisfy our equations, we solve the triple integral:

$$\int_{\tilde{n}/2}^{\tilde{n}-1} \int_{\tilde{n}-\tilde{x}}^{\tilde{x}} \int_{\tilde{n}-\tilde{y}}^{2\tilde{n}-\tilde{x}-\tilde{y}} \frac{e^{\tilde{x}+\tilde{y}+\tilde{z}}}{\tilde{x}\tilde{y}\tilde{z}} \quad d\tilde{x} \; d\tilde{y} \; d\tilde{z}$$

$$n^2 - 1 - \frac{n}{\ln n} - n^2(\ln 2) - \int_{\tilde{n}/2}^{\tilde{n}-1} \int_{\tilde{n}-\tilde{x}}^{\tilde{x}} \int_{\tilde{n}-\tilde{y}}^{2\tilde{n}-\tilde{x}-\tilde{y}} \frac{e^{\tilde{x}+\tilde{y}+\tilde{z}}}{\tilde{x}\tilde{y}\tilde{z}} d\tilde{x}d\tilde{y}d\tilde{z}$$

Total Number of Product Nodes

Figure 8: Real vs Estimate number of product nodes for 10 < n < 600

Fix $\delta \leq$ 1. Then for a finite A $\subset \mathbb{Z}$, one has

 $|A + A| + |AA| \gtrsim |A|^{1+\delta}$

In our case: $A = \{2, 3, ..., n\}$

Distribution of Product Degrees

Figure 9: Normalized distribution of degrees for n = 500

It's Exponential!

Figure 10: n = 3000, x, log y

Markov Chain

Begin with base case: Distribution of degrees at n = 50

> 518 162 104

Want to find distribution at n = 51:

When *n* increases by 1:

n = 51

- α : Number of new nodes in G(n)
- β_1 : Prob a node of degree 1 in G(n-1) become degree 2 in G(n)
- β_2 : Prob a node of degree 2 in G(n-1) become degree 3 in G(n)

$$\begin{bmatrix} 1-\beta_1 & \beta_1 & 0\\ 0 & 1-\beta_2 & \beta_2\\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 518\\ 162\\ 104 \end{bmatrix} + \begin{bmatrix} \alpha\\ 0\\ 0 \end{bmatrix}$$

$$\begin{aligned} \alpha : |V_p(n)| - |V_p(n-1)| \\ \beta_1 : & \frac{n-1-\alpha}{|V_p(n-1)|} * \left(1 - \frac{\binom{\pi(n)+1}{2}}{|V_p(n-1)|}\right) \\ \beta_2 : & \frac{n-1-\alpha}{|V_p(n-1)|} \end{aligned}$$

Markov Chain - Steady State

Iterate:

$$M = \begin{bmatrix} 518\\162\\104 \end{bmatrix}$$
$$M = \begin{bmatrix} 1 - \beta_1 & \beta_1 & 0\\0 & 1 - \beta_2 & \beta_2\\0 & 0 & 1 \end{bmatrix} \cdot M + \begin{bmatrix} \alpha\\0\\0 \end{bmatrix}$$

Steady normalized state:

$$\begin{bmatrix} |V_{p,d=1}|/|V_p| \\ |V_{p,d=2}|/|V_p| \\ |V_{p,d\geq3}|/|V_p| \end{bmatrix} = \begin{bmatrix} 0.58 \\ 0.20 \\ 0.22 \end{bmatrix} \approx \begin{bmatrix} 0.573 \\ 0.203 \\ 0.224 \end{bmatrix}$$

Probability

Probability that a sum node is the beginning of a chain:

 α = average degree of sum nodes on edge. p_1 = probability that product node on the edge has degree at least 2.

$$(1 - bin(\alpha, 0, p_1) - bin(\alpha, 1, p_1) - bin(\alpha, 2, p_1))$$

Probability that a product node is the beginning of a chain:

 $p_2 =$ probability that product node on the edge has degree at least 3.

$$(1 - bin(\alpha, 0, p_2) - bin(\alpha, 0, p_1))$$

Need to address that we are looking at nodes **at the edge**. Probabilities are different than in the whole graph.

Edge is defined by $2n - k\sqrt{n}$, the parameter k determines how far out we look.

Degree Distribution on Edge

Figure 11: *k* = 5 10 < *n* < 200

Using this Data

Sum: $(1 - bin(\alpha, 0, p_1) - bin(\alpha, 1, p_1) - bin(\alpha, 2, p_1))$ Product: $(1 - bin(\alpha, 0, p_2) - bin(\alpha, 0, p_1))$

Thanks