# Sum and Product Games 

## Longest Chains and Other Counts

Mariam Abu-Adas, Nila Cibu, Sherry Shen

Professor Eric Babson
July 292022
UC Davis

## Table of contents

1. Set Up
2. Longest Chains
3. Counting
4. Probability

## Set Up

## Notation

$$
\begin{aligned}
G(n) & : \text { Graph with max value } n \\
V_{p}(n) & : \text { Product nodes in } G(n) \\
V_{s}(n) & : \text { Sum nodes in } G(n) \\
d(V(n)) & : \text { Degree of node in } G(n) \\
V_{p, d=3}(n) & : \text { Condition on node (degree is equal to } 3 \text { ). }
\end{aligned}
$$

## Basic Counts



Figure 1: $\mathrm{n}=10$

## Basic Counts



Figure 2: Number of edges $=\frac{n(n-1)}{2}$

## Basic Counts



Figure 3: Degree of sum node $=\min \left(n-\left\lceil\frac{V_{s}}{2}\right\rceil+1,\left\lfloor\frac{V_{s}}{2}\right\rfloor-1\right)$

## Basic Counts



Figure 4: Degree of product node $=\left\lceil\frac{\prod_{i=1}^{m}\left(a_{i}+1\right)}{2}\right\rceil$

## Basic Counts

$$
\begin{aligned}
& \text { Number of edges : }\binom{n-1+2-1}{2}=\frac{n(n-1)}{2} \\
& \text { Degree of sum node : } \min \left(n-\left\lceil\frac{V_{s}}{2}\right\rceil+1,\left\lfloor\frac{V_{s}}{2}\right\rfloor-1\right)
\end{aligned}
$$

Final degree of product node : $V_{p}=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{m}^{a_{m}}$

$$
d\left(V_{p}\right)=\left\lceil\frac{\prod_{i=1}^{m}\left(a_{i}+1\right)}{2}\right\rceil
$$

## Longest Chains

## Big Question

What is the longest possible chain length in $G(n)$ for a given $n$ What is the maximum chain length in $G(n)$ for ANY $n$ ?

## Big Question



Figure 5: $n=36$


Figure 6: $\mathrm{n}=99$

## Data

| $n$ | $\max$ |
| :---: | :---: |
| 10 | 7 |
| 11 | 7 |
| 12 | 7 |
| 13 | 7 |
| 14 | 6 |
| 15 | 6 |
| 16 | 6 |
| 17 | 6 |
| 18 | 6 |
| 19 | 6 |
| 20 | 6 |
| 21 | 7 |
| 22 | 6 |$\quad$| $n$ | $\max$ |
| :---: | :---: |
| 23 | 6 |
| 24 | 6 |
| 25 | 9 |
| 26 | 6 |
| 27 | 6 |
| 28 | 6 |
| 29 | 6 |
| 30 | 6 |
| 31 | 6 |
| 32 | 8 |
| 33 | 6 |
| 34 | 6 |
| 35 | 6 |$\quad$| $n$ | $\max$ |
| :---: | :---: |
| 36 | 13 |
| 37 | 13 |
| 38 | 11 |
| 39 | 6 |
| 40 | 6 |
| 41 | 6 |
| 42 | 6 |
| 43 | 6 |
| 44 | 6 |
| 45 | 6 |
| 46 | 6 |
| 47 | 6 |
| 48 | 6 |$\quad$| $n$ | $\max$ |
| :---: | :---: |
| 49 | 7 |
| 50 | 6 |
| 51 | 6 |
| 52 | 6 |
| 53 | 6 |
| 54 | 6 |
| 55 | 6 |
| 56 | 6 |
| 57 | 7 |
| 58 | 7 |
| 59 | 7 |
| 60 | 6 |
| 61 | 6 |

## Data

| $n$ | $\max$ |
| :---: | :---: |
| 10 | 7 |
| 11 | 7 |
| 12 | 7 |
| 13 | 7 |
| 14 | 6 |
| 15 | 6 |
| 16 | 6 |
| 17 | 6 |
| 18 | 6 |
| 19 | 6 |
| 20 | 6 |
| 21 | 7 |
| 22 | 6 |$\quad$| $n$ | $\max$ |
| :---: | :---: |
| 23 | 6 |
| 24 | 6 |
| 25 | 9 |
| 26 | 6 |
| 27 | 6 |
| 28 | 6 |
| 29 | 6 |
| 30 | 6 |
| 31 | 6 |
| 32 | 8 |
| 33 | 6 |
| 34 | 6 |
| 35 | 6 |$\quad$| $n$ | $\max$ |
| :---: | :---: |
| 36 | 13 |
| 37 | 13 |
| 38 | 11 |
| 39 | 6 |
| 40 | 6 |
| 41 | 6 |
| 42 | 6 |
| 43 | 6 |
| 44 | 6 |
| 45 | 6 |
| 46 | 6 |
| 47 | 6 |
| 48 | 6 |$\quad$| $n$ | $\max$ |
| :---: | :---: |
| 49 | 7 |
| 50 | 6 |
| 51 | 6 |
| 52 | 6 |
| 53 | 6 |
| 54 | 6 |
| 55 | 6 |
| 56 | 6 |
| 57 | 7 |
| 58 | 7 |
| 59 | 7 |
| 60 | 6 |
| 61 | 6 |

## Data

| $n$ | $\max$ |
| :---: | :---: |
| 10 | 7 |
| 11 | 7 |
| 12 | 7 |
| 13 | 7 |
| 14 | 6 |
| 15 | 6 |
| 16 | 6 |
| 17 | 6 |
| 18 | 6 |
| 19 | 6 |
| 20 | 6 |
| 21 | 7 |
| 22 | 6 |


| $n$ | $\max$ |
| :---: | :---: |
| 23 | 6 |
| 24 | 6 |
| 25 | 9 |
| 26 | 6 |
| 27 | 6 |
| 28 | 6 |
| 29 | 6 |
| 30 | 6 |
| 31 | 6 |
| 32 | 8 |
| 33 | 6 |
| 34 | 6 |
| 35 | 6 |


| $n$ | $\max$ |
| :---: | :---: |
| 36 | 13 |
| 37 | 13 |
| 38 | 11 |
| 39 | 6 |
| 40 | 6 |
| 41 | 6 |
| 42 | 6 |
| 43 | 6 |
| 44 | 6 |
| 45 | 6 |
| 46 | 6 |
| 47 | 6 |
| 48 | 6 |


| $n$ | $\max$ |
| :---: | :---: |
| 49 | 7 |
| 50 | 6 |
| 51 | 6 |
| 52 | 6 |
| 53 | 6 |
| 54 | 6 |
| 55 | 6 |
| 56 | 6 |
| 57 | 7 |
| 58 | 7 |
| 59 | 7 |
| 60 | 6 |
| 61 | 6 |

## Why is 6 Frequent?

This is the only permanent chain at small product nodes, length is 6


## Why are Odds Frequent?

Other than the 6 chain, all but 3 graphs (for $10 \leq n \leq 1000$ ) have odd lengths.


A chain is odd if it starts with a sum


A chain is even if it starts with a product

## Conditions to Start a Chain

Goal: find the probability that start of a chain is a product versus a sum.

Conditions to start a chain:
Node is on the edge of the graph $\left(V_{s}(n) \geq 2 n-k \sqrt{n}\right)$
Degree at least 3
At least 3 neighbors of the node must have degree at least 2


## Need to Count

In order to calculate the probabilities we need the following:
Total number of sum nodes
Distribution of degrees in sum nodes
Total number of product nodes
Distribution of degrees in product nodes

## Counting

## Sum Nodes

Every sum from 4 to $2 n$ is achievable as a sum in $G(n)$

Thus:

$$
\left|V_{s}(n)\right|=2 n-3
$$

Possible degrees of sum nodes: $1,2, \ldots\left\lfloor\frac{n}{2}\right\rfloor$
Frequency of each degree: For all but highest degree, 4 nodes of each degree occur.

## Total Number of Product Nodes



## Total Number of Product Nodes

Unachievable product nodes ( $n=10$ ):
Primes less then $n$


## Total Number of Product Nodes

Unachievable product nodes ( $\mathrm{n}=10$ ):
Primes less then $n$
Primes between $n$ and $n^{2}$


## Total Number of Product Nodes

Unachievable product nodes ( $\mathrm{n}=10$ ):
Primes less then $n$
Primes between $n$ and $n^{2}$
All multiples of primes between $n$ and $n^{2}$


## Total Number of Product Nodes

Product nodes range from 4 to $n^{2}$
Unachievable product nodes ( $\mathrm{n}=10$ ):
Primes less then $n$ (eg. $1 * 5$ )
Primes between $n$ and $n^{2}$ (eg. $1 * 17$ )
All multiples of primes between $n$ and $n^{2}$
Three primes such that each partitioning results in an element larger than n


## Total Number of Product Nodes

Product nodes range from 4 to $n^{2}$
Unachievable product nodes ( $\mathrm{n}=10$ ):
Primes less then $n$ (eg. $1 * 5$ )
Primes between $n$ and $n^{2}$ (eg. $1 * 17$ )
All multiples of primes between $n$ and $n^{2}$
Three primes such that each partitioning results in an element larger than $n$

Four primes????

## Erdös-Kac Theorem

If $\omega(n)$ is number of distinct prime factors of $n$, then the probability distribution is:

$$
\frac{\omega(n)-\log \log (n)}{\sqrt{\log \log n}}
$$

$n$ will have an average of 4 distinct primes when $n=1,000,000,000,000,000,000,000,000$

## Total Number of Product Nodes

We wish to estimate the number of unachievable nodes:

1. Primes less than $n$

We know the the density of primes less than $n$ is $\frac{1}{\ln n}$
We know the number of primes less than $n$ can be approximated by:

$$
\pi(n)=\frac{n}{\ln n}
$$

## Total Number of Product Nodes

We wish to estimate the number of unachievable nodes:
2 and 3. Primes and multiples between $n$ and $n^{2}$
To find all primes and their multiples between $n$ and $n^{2}$, we solve:

$$
\int_{n}^{n^{2}} \frac{1}{\ln p} * \frac{n^{2}}{p} d p=n^{2}(\ln 2)
$$

## Total Number of Product Nodes

We wish to estimate the number of unachievable nodes:
4. Product of 3 primes between 2 and $n$

We want 3 primes $x, y, z$ such that:

$$
\begin{array}{rl}
x y z \leq n^{2} & x y>n \\
x z>n & y z>n
\end{array}
$$

We take the natural log of everything:

$$
\begin{array}{cc}
\tilde{x}+\tilde{y}+\tilde{z} \leq 2 \tilde{n} & \tilde{x}+\tilde{y}>\tilde{n} \\
\tilde{x}+\tilde{z}>\tilde{n} & \tilde{y}+\tilde{z}>\tilde{n}
\end{array}
$$

## Total Number of Product Nodes

We wish to estimate the number of unachievable nodes:
4. Product of 3 primes between 2 and $n$

Solution to system of linear equations:


## Total Number of Product Nodes

We wish to estimate the number of unachievable nodes:
4. Product of 3 primes between 2 and $n$

To count the number of triples $x, y, z$ that satisfy our equations, we solve the triple integral:

$$
\int_{\tilde{n} / 2}^{\tilde{n}-1} \int_{\tilde{n}-\tilde{x}}^{\tilde{x}} \int_{\tilde{n}-\tilde{y}}^{2 \tilde{n}-\tilde{x}-\tilde{y}} \frac{e^{\tilde{x}+\tilde{y}+\tilde{z}}}{\tilde{x} \tilde{y} \tilde{z}} d \tilde{x} d \tilde{y} d \tilde{z}
$$

## Total Number of Product Nodes

$$
n^{2}-1-\frac{n}{\ln n}-n^{2}(\ln 2)-\int_{\tilde{n} / 2}^{\tilde{n}-1} \int_{\tilde{n}-\tilde{x}}^{\tilde{x}} \int_{\tilde{n}-\tilde{y}}^{2 \tilde{n}-\tilde{x}-\tilde{y}} \frac{e^{\tilde{x}+\tilde{y}+\tilde{z}}}{\tilde{x} \tilde{y} \tilde{z}} d \tilde{x} d \tilde{y} d \tilde{z}
$$

## Total Number of Product Nodes



Figure 8: Real vs Estimate number of product nodes for $10<n<600$

## Erdös Conjecture

Fix $\delta \leq 1$. Then for a finite $A \subset \mathbb{Z}$, one has

$$
|A+A|+|A A| \gtrsim|A|^{1+\delta}
$$

In our case: $A=\{2,3, \ldots n\}$

## Distribution of Product Degrees



Figure 9: Normalized distribution of degrees for $n=500$

## It's Exponential!



Figure 10: $n=3000, x, \log y$

## Markov Chain

Begin with base case:
Distribution of degrees at $\mathrm{n}=50$
$\left[\begin{array}{l}518 \\ 162 \\ 104\end{array}\right]$

Want to find distribution at $n=51$ :
When $n$ increases by 1 :


## Markov Chain

$n=51$
$\alpha$ : Number of new nodes in $G(n)$
$\beta_{1}$ : Prob a node of degree 1 in $G(n-1)$ become degree 2 in $G(n)$
$\beta_{2}$ : Prob a node of degree 2 in $G(n-1)$ become degree 3 in $G(n)$

$$
\left[\begin{array}{ccc}
1-\beta_{1} & \beta_{1} & 0 \\
0 & 1-\beta_{2} & \beta_{2} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
518 \\
162 \\
104
\end{array}\right]+\left[\begin{array}{l}
\alpha \\
0 \\
0
\end{array}\right]
$$

## Markov Chain

$$
\begin{aligned}
& \alpha:\left|V_{p}(n)\right|-\left|V_{p}(n-1)\right| \\
& \beta_{1}: \frac{n-1-\alpha}{\left|V_{p}(n-1)\right|} *\left(1-\frac{\binom{\pi(n)+1}{2}}{\left|V_{p}(n-1)\right|}\right) \\
& \beta_{2}: \frac{n-1-\alpha}{\left|V_{p}(n-1)\right|}
\end{aligned}
$$

## Markov Chain - Steady State

Iterate:

$$
\begin{gathered}
M=\left[\begin{array}{l}
518 \\
162 \\
104
\end{array}\right] \\
M=\left[\begin{array}{ccc}
1-\beta_{1} & \beta_{1} & 0 \\
0 & 1-\beta_{2} & \beta_{2} \\
0 & 0 & 1
\end{array}\right] \cdot M+\left[\begin{array}{l}
\alpha \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

Steady normalized state:

$$
\left[\begin{array}{l}
\left|V_{p, d=1}\right| /\left|V_{p}\right| \\
\left|V_{p, d=2}\right| /\left|V_{p}\right| \\
\left|V_{p, d \geq 3}\right| /\left|V_{p}\right|
\end{array}\right]=\left[\begin{array}{l}
0.58 \\
0.20 \\
0.22
\end{array}\right] \approx\left[\begin{array}{c}
0.573 \\
0.203 \\
0.224
\end{array}\right]
$$

## Probability

## Putting it All Together

Probability that a sum node is the beginning of a chain:
$\alpha=$ average degree of sum nodes on edge.
$p_{1}=$ probability that product node on the edge has degree at least 2.

$$
\left(1-\operatorname{bin}\left(\alpha, 0, p_{1}\right)-\operatorname{bin}\left(\alpha, 1, p_{1}\right)-\operatorname{bin}\left(\alpha, 2, p_{1}\right)\right)
$$

Probability that a product node is the beginning of a chain:
$p_{2}=$ probability that product node on the edge has degree at least 3.

$$
\left(1-\operatorname{bin}\left(\alpha, 0, p_{2}\right)-\operatorname{bin}\left(\alpha, 0, p_{1}\right)\right)
$$

## Plugging in Values

Need to address that we are looking at nodes at the edge. Probabilities are different than in the whole graph.

Edge is defined by $2 n-k \sqrt{n}$, the parameter $k$ determines how far out we look.

## Degree Distribution on Edge



Figure 11: $k=5 \quad 10<n<200$

## Using this Data

Sum: $\left(1-\operatorname{bin}\left(\alpha, 0, p_{1}\right)-\operatorname{bin}\left(\alpha, 1, p_{1}\right)-\operatorname{bin}\left(\alpha, 2, p_{1}\right)\right)$
Product: $\left(1-\operatorname{bin}\left(\alpha, 0, p_{2}\right)-\operatorname{bin}\left(\alpha, 0, p_{1}\right)\right)$


Thanks

