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Set Up



G(n) : Graph with max value n
Vp(n) : Product nodes in G(n)
Vs(n) : Sum nodes in G(n)
d(V(n)) : Degree of node in G(n)
Vp.d=3(n) : Condition on node (degree is equal to 3).
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Figure 1: n =10



Basic Counts
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Figure 2: Number of edges = %=1



Basic Counts
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Basic Counts
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Figure 4: Degree of product node = (Lﬂwga/“)w




Number of edges : (n—1+2—1> _nh=1)

2 2

Degree of sum node : min(n — Pgﬂ +1, BSJ -1)

Final degree of product node : V, = p{"p5*...pa

d(vs) = {Hmsiw)w



Longest Chains




Big Question

What is the longest possible chain length in G(n) for a given n
What is the maximum chain length in G(n) for ANY n?



Big Question
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Figure 5: n = 36 Figure 6: n = 99
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Why is 6 Frequent?

This is the only permanent chain at small product nodes, length is 6
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Why are Odds Frequent?

Other than the 6 chain, all but 3 graphs (for 10 < n < 1000) have odd
lengths.

A chain is even if it starts with a product
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Conditions to Start a Chain

Goal: find the probability that start of a chain is a product versus a
sum.
Conditions to start a chain:

Node is on the edge of the graph (Vs(n) > 2n — ky/n)
Degree at least 3
At least 3 neighbors of the node must have degree at least 2



Need to Count

In order to calculate the probabilities we need the following:

Total number of sum nodes
Distribution of degrees in sum nodes
Total number of product nodes

Distribution of degrees in product nodes
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Counting




Every sum from 4 to 2n is achievable as a sum in G(n)

Thus:
[Vs(n)| =2n -3
Possible degrees of sum nodes: 1,2,...[5]

Frequency of each degree: For all but highest degree, 4 nodes of
each degree occur.



Total Number of Product Nodes

Product nodes range from 4 to n?

4 n nZ




Total Number of Product Nodes

Unachievable product nodes (n=10):

Primes less then n

— :

17
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Total Number of Product Nodes

Unachievable product nodes (n=10):

Primes less then n

Primes between n and n?

—t :

1%13
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Total Number of Product Nodes

Unachievable product nodes (n=10):

Primes less then n
Primes between n and n?

All multiples of primes between n and n?

{ | e

2 %13 3%13 4 %13 5% 13
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Total Number of Product Nodes

Product nodes range from 4 to n?
Unachievable product nodes (n=10):

Primes less then n (eg. 1% 5)

Primes between n and n? (eg. 1x17)

All multiples of primes between n and n?

Three primes such that each partitioning results in an element
larger than n

22



Total Number of Product Nodes

Product nodes range from 4 to n?
Unachievable product nodes (n=10):

Primes less then n (eg. 1% 5)
Primes between n and n? (eg. 1% 17)
All multiples of primes between n and n?

Three primes such that each partitioning results in an element
larger than n

Four primes????
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Erdos-Kac Theorem

If w(n) is number of distinct prime factors of n, then the probability

distribution is:
w(n) — log log(n)

Vl0oglogn

n will have an average of 4 distinct primes when
n = 1,000,000, 000,000,000,000, 000,000
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Total Number of Product Nodes

We wish to estimate the number of unachievable nodes:
1. Primes less than n
We know the the density of primes less than n is ﬁ

We know the number of primes less than n can be approximated by:

(n)

" Inn

25



Total Number of Product Nodes

We wish to estimate the number of unachievable nodes:
2 and 3. Primes and multiples between n and n?

To find all primes and their multiples between n and n?, we solve:

L T
— % —dp = n%In2
| g e = mn2)
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Total Number of Product Nodes

We wish to estimate the number of unachievable nodes:
4. Product of 3 primes between 2 and n

We want 3 primes x, y,z such that:

xyz<n*> xy>n

XzZ>n yz>n

We take the natural log of everything:

X+y+z<2h
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Total Number of Product Nodes

We wish to estimate the number of unachievable nodes:
4. Product of 3 primes between 2 and n

Solution to system of linear equations:

C=(0, 10, 10)
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Total Number of Product Nodes

We wish to estimate the number of unachievable nodes:
4. Product of 3 primes between 2 and n

To count the number of triples x, y, z that satisfy our equations, we
solve the triple integral:

A1 X M-%—§ K2
[T 774 saa
a2 Ja-x JA—y Xyz
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Total Number of Product Nodes

n 2%~y X ty+7 s
-1 — — — n%In2) / / / ———dXdydz
Inn 7 Xz
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Total Number of Product Nodes
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Figure 8: Real vs Estimate number of product nodes for 10 < n < 600 A



Erdos Conjecture

Fix 6 < 1. Then for a finite A C Z, one has

|A+ Al + |AA| > |A|'0

Inour case: A={2,3,...n}
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Distribution of Product Degrees
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Figure 9: Normalized distribution of degrees for n = 500 X



It's Exponential!
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Figure 10: n = 3000, x, log y
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Markov Chain

Begin with base case:

Distribution of degrees at n = 50

518
162
104

Want to find distribution at n = 51:

When n increases by 1

N

/

N

/

n

P/n
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Markov Chain

n=>51

a: Number of new nodes in G(n)
B1: Prob a node of degree 1in G(n — 1) become degree 2 in G(n)
B,: Prob a node of degree 2 in G(n — 1) become degree 3 in G(n)

1—ﬁ1 ﬂ] 0 518 «
0 1-8 B || 162 |+]0
0 0 1 104 0
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Markov Chain

a:|[Vp(n)] = [Vp(n = 1)

—1-a _ (ﬂ(n2)+1)
B <1 [AGED]

n—1—a«
A
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Markov Chain - Steady State

Iterate:
518
M = 162
104
1— 056 B 0 «
M = 0 1—6, B | -M+] 0
0 0 1 0
Steady normalized state:
|Vp,a=1l/1Vpl 0.58 0.573
Vpaol/|Vp| | = | 020 | ~ | 0.203

|Vp,a>3]/[Vpl 0.22 0.224
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Probability




Putting it All Together

Probability that a sum node is the beginning of a chain:

« = average degree of sum nodes on edge.
p1 = probability that product node on the edge has degree at least 2.

(1= bin(a, 0,p1) — bin(a, 1, p1) = bin(e, 2, p1))
Probability that a product node is the beginning of a chain:

p, = probability that product node on the edge has degree at least 3.

(1—=>bin(e, 0,py) — bin(c, 0, p1))
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Plugging in Values

Need to address that we are looking at nodes at the edge.
Probabilities are different than in the whole graph.

Edge is defined by 2n — ky/n, the parameter k determines how far out
we look.

40



Degree Distribution on Edge
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Figure 11: k=5 10 < n < 200 sl



Using this Data

Sum: (1= bin(a, 0, p1) — bin(a, 1, p1) — bin(a, 2, p1))
Product: (1— bin(«, 0, p,) — bin(a, 0, p1))
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