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Abstract

Microscopic organisms and biological systems at low Reynolds number frequently
rely on filament-like appendages known as flagella or cilia for movement. To under-
stand these systems we must model the interactions between filament motion and the
surrounding fluid. Differences in fluid characteristics can alter the motion of a singular
filament. Other interactions involve coupling forces between multiple filaments. In this
model, the filaments are treated are simplified in a two link discrete form, with systems
of ordinary differential equations solved numerically to analyze the motion. Through
this method we observe and reconfirm known dynamics of motion with a single fila-
ment. We also observe varying phase differences between coupled filaments for regimes
dependent on coupling strength and initial phase difference.

1 Introduction

In this report we recap the study of beating filaments at low Reynolds number. Reynolds
number is the ratio between inertial forces and viscous forces for a given fluid. For a system
at low Reynolds number there is no inertial force, so all microorganisms wanting to move
must rely entirely on viscous forces at low Reynolds number. One method of motion uses
filament-like appendages known as flagella or cilia. Perhaps most notably, sperm are an
organism that operates at low Reynolds number with a single flagella. Organisms that can
only move through deformation of their bodies’ shape are known as swimmers [5].

We wish to study the motion of these systems to better understand the behavior of
swimmers at low Reynolds number. In this report, we take an approach by examining
isolated filaments with varying structure, a simple approximation of flagella or cilia. Mainly,
we will examine the effects of varying types of fluid forces on the motion of a filament at low
Reynolds number.
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2 Single Filament

To model this motion we will examine a single filament. The motion of this filament can
be expanded and compared to that of an organism with a single flagella.

2.1 Continuous Filament

A simple starting case is a single continuous filament fixed but free to rotate on one
end, and free to move throughout the fluid on the other. This motion and analysis has been
modeled in a previous paper by De Canio, Lauga, and Goldestein[3]. In this example, beating
filament dynamics are replicated through the use of a tangential follower force. This is a
force of constant magnitude applied to the end of a filament pointing tangentially inwards.
As described in the paper, this follower force induces a beating motion for low amplitude of
oscillation. Following this continuous filament we will discretize the filament for simplicity
and better understanding of the mechanics of this system.

2.2 Two Link Filament

A simpler model outlined by De Canio, Lauga, and Goldestein, would be to approximate
the continuous model with a filament consisting of two rigid links, connected with “torsion
springs” on the joints. This we call the two link model, which is a type of ball and spring
model. Each end of a link has a ball that contributes to the viscous drag forces on the
system, and the springs model the bending forces in the in the continuous filament.

Figure 1: A schematic diagram of the two link filament model.

In this model we have a few physical parameters about the system. Each link has length
l, for a total length scale of 2l, our follower force has strength Γ, each spring has a spring
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constant of k, each angle between the base and the links are described as θ1 and θ2, and ζ is
the viscous drag coefficient of the balls.

2.2.1 Derivation of Equations of Motion

We would like to create an equation or set of equations that describe the motion of this
system. This can be done using the principle of virtual work[3], which is similar to a torque
balance.

Γ · δrB + FB · δrB + FA · δrA − kθ1δθ1 − k(θ1 − θ2)(δθ1 − δθ2) = 0 (1)

In this equation the term involving Γ relates to the follower force, the terms with FA,FB

relate to the viscous drag force, and the remaining terms with δθi’s relate to the restoring
force of the springs. The force vectors in the above equation are

Γ = −Γt̂ = −Γ(cos θ2, sin θ2)

FA = −ζvA

FB = −ζvB

Note in particular we are using a formula for viscous drag coefficient ζ. Using these force
vectors we expand the system in terms of θi’s and δθi’s, we obtain the following equations

Γl sin(θ1 − θ2)− 2ζl2θ̇1 − ζl2 cos(θ1 − θ2)θ̇2 − 2kθ1 + kθ2 = 0 (2)

−ζl2θ̇2 − ζl2 cos(θ1 − θ2)θ̇1 + kθ1 − kθ2 = 0

We simplfy this system further by nondimensionalizing. We say t̃ = k
ζl2

t and define Σ = Γl
k
.

We call this value Σ our nondimensional follower force parameter. So with this nondimen-
sionalization our system simplifies to,

Σ sin(θ1 − θ2)− 2θ̇1 − cos(θ1 − θ2)θ̇2 − 2θ1 + θ2 = 0 (3)

−θ̇2 − cos(θ1 − θ2)θ̇1 + θ1 − θ2 = 0 (4)

These equations describe the motion of two link filament model. In practice, we will solve
these equations numerically in MATLAB with the ode45 or other solvers.

2.2.2 Stability Analysis

We will proceed with a linear stability analysis. This allows us to predict the mechanics
on the system for low amplitudes of oscillation. To begin we can take equations 3 and 4
and linearize them about the stable equilibrium θ1 = θ2 = 0. As such, we will approximate
sin θi ≈ θi and cos θi ≈ 1. With this approximation and the removal of higher order terms
we arrive at the following system.

Σ(θ1 − θ2)− 2θ̇1 − θ̇2 − 2θ1 + θ2 = 0 (5)

−θ̇2 − θ̇1 + θ1 − θ2 = 0
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Following this linearization, we can assume a solution to this system takes the form θi = θ̂ie
ωt.

With this our system becomes,

Σ(θ̂1 − θ̂2)− ω(2θ̂1 + θ̂2)− 2θ̂1 + θ̂2 = 0 (6)

−ω(θ̂1 − θ̂2) + θ̂1 − θ̂2 = 0

Grouping by θ̂i we can represent this system as a matrix and take the determinant, which
we will set equal to zero.

ω2 + 2(3− Σ)ω + 1 = 0

This equation allows us to solve for the ω± which can give frequency of filament oscillation
in terms of Σ, our single follower force parameter. So,

ω± = Σ− 3±
√

(Σ− 4)(Σ− 2) (7)

With this equation for ω± we can predict the low amplitude behavior of the system depending
on the value of Σ.

• For 0 < Σ < 2, Re(ω±) < 0 and Im(ω±) = 0, so we expect stable decay to the
equilibrium θ1 = θ2 = 0.

• For 2 < Σ < 3, Re(ω±) < 0 and Im(ω±) ̸= 0, so we expect decaying oscillations to the
equilibrium.

• For Σ = 3, Re(ω±) = 0 and Im(ω±) ̸= 0, so we might expect stable, unchanging
oscillations. However, as this is a bifurcation point, we do not have a conclusive
expectation of the model.

• For 3 < Σ < 4, Re(ω±) > 0 and Im(ω±) ̸= 0, so we expect exponentially growing
oscillations.

• For Σ > 4, Re(ω±) > 0 and Im(ω±) = 0, so we expect exponential growth away from
equilibrium.

Using MATLAB we confirm that for low amplitude of oscillation the non-linear system
of equations describing the two link filament behaves as predicted by the linear stability
analysis.

2.2.3 Frequency Extraction

Another topic is to examine the differences between the linear stability analysis and the
numerical simulations of the two link model in the viscous case. In this scenario, we will
examine the frequency differences between the stability analysis and numerical simulations.
The estimated frequencies from the stability analysis come from the following eigenvalues
for angular frequency.

ω± = Σ− 3±
√

(Σ− 4)(Σ− 2)
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Figure 2: Numerical solutions for a two link model with a small intitial deviation from
equilibrium. (a) Σ = 2, (b) Σ = 2.9, (c) Σ = 3.5

The analysis predicts oscillations between 2 < Σ < 4 so taking the positive imaginary part of
this equation (which correspond to oscillations), we can estimate the frequency of oscillations
to be,

flin =
Im(ω+)

2π
=

√
−(Σ− 4)(Σ− 2)

2π

The numerical data was extracted using a Fast Fourier Transform (FFT). This viscous
simulation was done in MATLAB by running the simulation for a long enough time to get
a time-periodic solution, then taking the largest peak from the frequency spectra. This was
then done for a range of values for Σ to get an estimated frequency dependence. Figure 3
displays the relationship between the numerical simulations and the linear stability analysis.

Figure 3: FFT Frequency analysis (blue) compared with stability analysis frequency (red)
for varying Σ.

As seen in Figure 3, the values for frequency match closely for values near the bifurcation
point (Σ = 3, where non-decaying oscillations begin) but diverges particularly larger values of
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Σ. This is to be expected for large values of Σ, as the stability analysis predicts there would
simply be exponential growth away from equilibrium point. This is the case, but larger
amplitude (and not particularly sinusodial) oscillations still occur through observation of
simulations for higher values of Σ. The stepwise nature of the FFT analysis is due to a
limitation in resolution of frequency provided by the FFT.

2.3 Viscoelastic Model

Another change that can be made to the system is the type of fluid and therefore the fluid
force the system experiences. In particular we previously examined the two link filament
in a incompressible, viscous fluid. An expansion from this is to a model that contains a
viscoelastic fluid. In our case, we consider viscoelastic fluids that have a polymer restoring
force. This means the fluid can be thought to have “memory” or a location it would return
to after deformation.

2.3.1 Maxwell Model

We will use a model known as the Maxwell Model to modify the system of equations we
previously had. In this instance, the modification accounts for an additional restoring force
σ from polymers in the fluid, ϵ the total strain, ζp the viscosity of the polymers, and E the
elastic modulus of the polymers. Thus,

ζp
E
σ̇ + σ = ζpϵ̇

Setting a new parameter λ = ζp
E

and replacing the right hand side with our viscous force
from earlier we get the following new equation for motion,

λσ̇ + σ = −ζv (8)

where ζ is the viscosity of the fluid. Introducing this for each ball on the two link filament
we can obtain the new system of equations.

Γ · δrB + σB · δrB + σA · δrA − kθ1δθ1 − k(θ1 − θ2)(δθ1 − δθ2) = 0 (9)

λσ̇A + σA = −ζvA

λσ̇B + σB = −ζvB

Expanding this system we end up with 6 equations, two differential equations and 2 constraint
equations. This can again be solved numerically in MATLAB.

0 = −Γl sin(θ2 − θ1) + l
[
−(σAx + σBx) sin θ1 +

(
σAy + σBy

)
cos θ1

]
+ k(θ2 − 2θ1) (10)

0 = l
[
−σBx sin θ2 + σBy cos θ2

]
− k(θ2 − θ1)

λσ̇Ax + σAx = ζlθ̇1 sin θ1

λσ̇Ay + σAy = −ζlθ̇1 cos θ1

λσ̇Bx + σBx = ζl
(
θ̇1 sin θ1 + θ̇2 sin θ2

)
λσ̇By + σBy = −ζl

(
θ̇1 cos θ1 + θ̇2 cos θ2

)
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2.3.2 Nondimensionalization

Similarly to the viscous case we nondimensionalize this system to leave as few parameters
as possible. First we scale our time factor by T = ζl2

k
. We would like to vary λ freely as

the parameter corresponding to the polymers so we define a new parameter as the ratio of
polymer strength to viscous strength to be Λ = kλ

ζl2
along with our familiar follower force

parameter Σ = Γl
k
. This gives us the following nondimensionalized system.

0 = −Σ sin(θ2 − θ1)− (σAx + σBx) sin θ1 +
(
σAy + σBy

)
cos θ1 + θ2 − 2θ1 (11)

0 = −σBx sin θ2 + σBy cos θ2 − θ2 + θ1

Λσ̇Ax + σAx = θ̇1 sin θ1

Λσ̇Ay + σAy = −θ̇1 cos θ1

Λσ̇Bx + σBx =
(
θ̇1 sin θ1 + θ̇2 sin θ2

)
Λσ̇By + σBy = −

(
θ̇1 cos θ1 + θ̇2 cos θ2

)
2.3.3 Stability Analysis

Again similarly to the viscous case we can linearize the system of equations, which in
turn reduces down to 4 equations.

0 = Σ(θ1 − θ2) + (σAy + σBy) + (θ1 − 2θ2) (12)

0 = σBy − (θ2 − θ1)

Λσ̇Ay + σAy = −θ̇1

Λσ̇By + σBy = −(θ̇1 + θ̇2)

Repeating the process of the viscous system we find the following equation for ω± near the
equilibrium point of 0.

ω± =
Σ− Λ− 3±

√
(Σ− 4)(Σ− 2)

−2ΣΛ + Λ2 + 6Λ + 1
. (13)

Note that when Λ = 0, ω± is the same as the viscous model. One method of visualizing the
behavior of the model is with contour plots. The two in Figure 4 represent the positive root
of ω± which then display information relating to both the exponential growth/decay of the
system, as well as the oscillatory nature of the system. Following along the bottom axis of
Λ = 0 we recover the viscous model. A particularly interesting note about this system is
that as Λ increases, the region for exponential decay shifts to higher values of Σ.
An unfortunate result of the Maxwell Model was the inability to simulate large values of

Λ. The non-linear DAE system of equations continued to run into a singularity when Λ > 1
regardless of the solver used in MATLAB. As such, most results occurred with low polymer
forces close to the viscous model. However, other group members of this project proceeded
with a different model and were able to achieve more successful results for higher viscoelastic
forces.
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Figure 4: Pertaining to the viscoelastic two-link filament model, the imaginary part of
ω± corresponds to the frequency of oscillation, whereas the real part of ω± corresponds to
exponential growth or decay, from our stability analysis.

3 Coupled Filaments

3.1 Model

The model for this system is created from two discrete filaments. Unlike the two link
viscous model, we cannot as easily nondimensionalize the system, so we will have many
parameters. Similar to the two link viscous model we apply an equal tangential follower
force to each filament with strength Γ. For our size parameters, the balls have diameter ϵ,
the filaments are separated by the distance d, and each link of the filament has length l,
where ϵ < d < 2l. Much of this setup is a discretization of a similar model continuous in a
paper by Man and Kanso[4]. A sketch of this model is outlined in Figure 5.

3.2 Derivation

The equation of motion for this system can be derived through a torque balance. We
equate the torques of the follower forces and the coupled fluid forces with the restoring force
of the springs.

Γ1 · δr12 + Γ2 · δr22 + F · δr = Frest · δθ (14)

In this scenario, Γ1,Γ2 are the follower forces, F is the force corresponding to the fluid and
the coupling motion and Frest is shorthand combination of all of the restoring forces from
the spring-like joints. To find the fluid force we will use a solution to Stokes’s Equations
where initially each ball is treated as a point force. The intuition behind this system is that
movement of a ball (a point of our filament) in a fluid will affect all of the surrounding fluid.
In this scenario the fluid is an incompressible Newtonian fluid with viscosity µ. As such, a
point force in a fluid will induce a velocity field. Comparing all these forces and velocity
fields we can create a system that relates forces and movement of the filaments. We can
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Figure 5: A diagram of the model to be used for coupled motion analysis.

begin by solving the Stokes equations.

µ∆U −∇p+ F δ(x− x0) = 0 (15)

∇ ·U = 0 (16)

Using a method known as the Method of Regularized Stokeslets, we we obtain a regularized
solution relating the fluid velocity at a point and the force from another point[1, 2].

ui =
1

8πµ
Sϵ
ijFj (17)

Sϵ
ij(x,x0) = δij

r2 + 2ϵ2

(r2 + ϵ2)3/2
+

(xi − (x0)i)(xj − (x0)j)

(r2 + ϵ2)3/2
(18)

In these equations ui represents the velocity of one ball in our diagram, and Fj is the force
a different ball exerts on it. The term Sij is called a Stokeslet and r is the distance between
the two points x and x0 the Stokeslet is describing in the fluid. We can represent this as

U = M F

where U is the vector of velocities, F is the vector of forces and M is the matrix relating the
two with Stokeslets. As the Stokeslet matrix has entries on the diagonal, it will always be
invertible so we write

M−1 U = F

We can then describe U in terms of θi’s and substitute into our torque balance. This then
gives a system that can be solved numerically in MATLAB.
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Our main focus in the final motion is the phenomenon known as phase locking. We expect
the filaments to have similar oscillatory motion and and a constant phase difference in the
final state. We anticipate seeing filaments moving in parallel, but could also observe other
motion. To determine a phase difference we begin the simulation with arbitrary phase
differences between the two filaments and run the simulation until it reaches a steady state.
Then a final phase difference can be calculated between the two filaments. For a systematic
approach we choose 3 different couplings strengths. These are determined by the separation
distance of the filaments. We use d = 0.4l for strong coupling, d = 0.7l for moderate
coupling, and d = 1.6l for weak coupling. For each particular strength of coupling we vary
both the initial phase difference of the filaments and Σ, our nondimensionalized follower
force parameter. We use Σ as defined earlier in the viscous case in order to observe similar
oscillation amplitude and behavior for the viscous case. As such, many of our oscillations take
place were Σ is slightly greater than 3, which is where our smallest amplitude of oscillation
takes place.

3.3 Results

Figure 6 displays the relationships between the initial phase difference and follower force
strength for each strength of coupling. For strong coupling we see zones where the filaments
phase lock in parallel and also anti-parallel. For the moderate coupling we see a majority
zone of parallel phase locking, but also a small region of non-trivial phase locking. This
region has about a 0.6 period difference between the filaments. So they are not anti-parallel,
but some other fraction out of phase. Finally for weak coupling we see a very small section
of very small phase difference. This occurs for tiny amplitudes of oscillation and appears to
be a small lag behind of one filament from the other. These non-trivial components of phase
locking result from this method of coupling between filaments, specifically at low amplitude.
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(a) Strong Coupling (d = 0.4l)

(b) Moderate Coupling (d = 0.7l)

(c) Weak Coupling (d = 1.6l)

Figure 6: Left: Final phase difference dependent on initial phase difference and nondimen-
sional follower force Σ, for strong (d = 0.4l), moderate (d = 0.7l), and weak (d = 1.6l)
coupling. Right: Simulated filament visualizations for each non-trivial phase locking exam-
ple. Time is indicated by opacity of filament.
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4 Conclusion

We have summarized known research and laid the groundwork for future research of
beating filaments. Some future questions arise from this model. Examples of these may be,
higher link number filaments, loaded filaments[3], continuous filament coupling[4], uneven
follower forces for coupling, and more than two filaments for coupling. These questions are
interesting extensions of the groundwork laid by the two link, two filament, coupled model
outlined in this report.
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