A Sum and Product Game

Yuanyuan Shen

How does the game work?

- Given two numbers $2 \leq \mathrm{p}, \mathrm{q} \leq \mathrm{n}$
- The sum person S knows ($p+q$); the product person P knows (pq)
- They alternatively answer the question: do you know (p, q)?

	S	P	S	P
$(5,2)$	N	Y		
$(4,3)$	N	N	Y	
$(6,2)$	N	N	N	Y

Relating the Game to the Graph

Definition 1. A sum path P of length $l=l(P)$ in $G(n)$ is two length l sequences a_{i}, b_{i} such that $a_{i} \neq a_{i+1}, a_{i} \geq b_{i} \forall i$, and $a_{2 i} b_{2 i}=a_{2 i-1} b_{2 i-1} \forall 1 \leq i \leq \frac{l}{2}, a_{2 i}+b_{2 i}=a_{2 i+1}+b_{2 i+1} \forall 1 \leq i \leq \frac{l-1}{2}$.
Definition 5. A sum tail of length l is a sum path $T=\left(a_{i}, b_{i}\right)$ of length l such that for every other sum path $\bar{T}=\left(\overline{a_{i}}, \overline{b_{i}}\right)$ of length \bar{l}, where $\left(\overline{a_{1}}, \overline{b_{1}}\right)=\left(a_{1}, b_{1}\right), \bar{l} \leq l$.

Relating the Game to the Graph

Definition 1. A sum path P of length $l=l(P)$ in $G(n)$ is two length l sequences a_{i}, b_{i} such that $a_{i} \neq a_{i+1}, a_{i} \geq b_{i} \forall i$, and $a_{2 i} b_{2 i}=a_{2 i-1} b_{2 i-1} \forall 1 \leq i \leq \frac{l}{2}, a_{2 i}+b_{2 i}=a_{2 i+1}+b_{2 i+1} \forall 1 \leq i \leq \frac{l-1}{2}$.
Definition 5. A sum tail of length l is a sum path $T=\left(a_{i}, b_{i}\right)$ of length l such that for every other sum path $\bar{T}=\left(\overline{a_{i}}, \bar{b}_{i}\right)$ of length \bar{l}, where $\left(\overline{a_{1}}, \overline{b_{1}}\right)=\left(a_{1}, b_{1}\right), \bar{l} \leq l$.

Theorem. A game of (p, q) involves $l=2 m-1$ NO before YES if and only if

- There is one sum tail of length l with $\left(a_{1}, b_{1}\right)=(p, q)$
- There is at least one other sum path of length $l^{\prime} \geq l$ with $a_{1}^{\prime}+b_{1}^{\prime}=p+q, a_{1} \neq p$

A game of (p, q) involves $l=2 m$ NO before YES if and only if

- There is at least one sum tail of length $l-1$ with $a_{1}+b_{1}=p+q, a_{1} \neq p$
- There is one sum path of length $l^{\prime}>l-1$ with $\left(a_{1}^{\prime}, b_{1}^{\prime}\right)=(p, q)$
- There is no sum path of length $l^{\prime \prime}>l-1$ with $a_{1}^{\prime \prime}+b_{1}^{\prime \prime}=p+q, a_{1}^{\prime \prime} \neq p$

Properties of $\mathrm{G}(\mathrm{n})$

- Each tail either has length one or ends with a product node

Properties of $\mathrm{G}(\mathrm{n})$

- There is no path from a 'big' sum node S to any other sum node

$$
3+2 n-\sqrt{5+4 n} \leq S \leq 2 n
$$

Properties of $\mathrm{G}(\mathrm{n})$

- Suppose for given n, the game of some (p, q) involves r NOs before YES. Then for every $r^{\prime}<r$, there is a pair (p^{\prime}, q^{\prime}) such that the game of (p^{\prime}, q^{\prime}) involves r^{\prime} NOs before YES

(4) $2_{2} 4$

You are the observer of the game and given n ...
Can you determine the pair of numbers (p,q) after hearing 4 NOs before a YES?

You are the observer of the game ...
Are there infinitely many n where you can determine the pair of numbers (p, q) after hearing 4 NOs before a YES?

Q: Does the observer know (p, q) after 4 NOs and YES?

- For all n, the pair $(4,4)$ involves 4 NOs before a YES
- The observer can determine the pair of numbers (p, q) after hearing 4 NOs before a YES if and only if there is no other pair with 4 NOs before a YES.

$\exists \infty$ n s.t. the observer does not know (p, q) after 4 N 1 Y

I.e. $\exists \infty n$ such that there is at least another pair $\left(p^{\prime}, q^{\prime}\right)$ whose game involves 4 NO and YES

$$
\mathbf{n}=\mathbf{p}^{2} \quad \mathrm{p}=\mathrm{m}(\mathrm{~m}+1)
$$

$\exists \infty \mathrm{n}$ s.t. the observer knows (p,q) after 4 N 1 Y

I.e. $\exists \infty n$ such that there is no other pair $\left(p^{\prime}, q^{\prime}\right)$ whose game involves 4 NO and YES
$C_{n}=\{(p, q) \mid(p, q)$ involves 4 NOs before YES in game of $n\}$
Definition. $\tau_{1}(p, q)$ is the least integer such that $(p, q) \in C_{\tau_{1}(p, q)}$.
Definition. $\tau_{2}(p, q)$ is the greatest integer such that $(p, q) \in C_{\tau_{2}(p, q)}$.
Theorem. $\tau_{2}(C=(p, q))$ is well-defined and $(p, q)=C \in C_{\tau}$ for every $\tau_{1} \leq \tau \leq \tau_{2}$.

$\exists \infty \mathrm{n}$ s.t. the observer knows (p, q) after 4 N 1 Y

I.e. $\exists \infty n$ such that there is no other pair (p^{\prime}, q^{\prime}) whose game involves 4 NO and YES

$$
\text { Goal: } \quad \mathbb{P}\left(\bigsqcup_{m=\tau_{1}(C)+1}^{\tau_{2}(C)+1}\left[C_{m-1}^{c} \cap\left(\bigcap_{j=m}^{\tau_{2}(C)+1} C_{j}\right)\right] \neq \emptyset\right)<1
$$

$$
\mathbb{P}\left(\bigsqcup_{m=\tau_{1}(C)+1}^{\tau_{2}(C)+1}\left[C_{m-1}^{c} \cap\left(\bigcap_{j=m}^{\tau_{2}(C)+1} C_{j}\right)\right] \neq \emptyset\right)=\sum_{k=1} \mathbb{P}\left(\left\{\bigsqcup_{m=\tau_{1}(C)+1}^{\tau_{2}(C)+1}\left[C_{m-1}^{c} \cap\left(\bigcap_{j=m}^{\tau_{2}(C)+1} C_{j}\right)\right] \neq \emptyset\right\} \cap\left\{\left(\tau_{2}(C)-\tau_{1}(C)=k\right\}\right)\right.
$$

$\exists \infty \mathrm{n}$ s.t. the observer knows (p,q) after 4 N 1 Y

I.e. $\exists \infty \mathrm{n}$ such that there is no other pair ($\mathrm{p}^{\prime}, \mathrm{q}^{\prime}$) whose game involves 4 NO and YES

$$
\begin{aligned}
& \left|C_{j-1}^{c} \cap C_{j} \cap \ldots \cap C_{j+k-1} \cap C_{j+k}^{c}\right|=\left|C_{j-1}^{c} \cap C_{j}\right|\left[\prod_{l=1}^{k-1} \frac{\left|C_{j-1}^{c} \cap C_{j} \cap \ldots \cap C_{j+l}\right|}{\left|C_{j-1}^{c} \cap C_{j} \cap \ldots \cap C_{j+l-1}\right|}\right] \frac{\left|C_{j-1}^{c} \cap C_{j} \cap \ldots \cap C_{j+k-1} \cap C_{j+k}^{c}\right|}{\left|C_{j-1}^{c} \cap C_{j} \cap \ldots \cap C_{j+k-1}\right|} \\
& \approx\left|C_{j-1}^{c} \cap C_{j}\right|\left[\prod_{l=1}^{k-1} \frac{\left|C_{j+l-1} \cap C_{j+l}\right|}{\left|C_{j+l-1}\right|}\right]\left(1-\frac{\left|C_{j+k-1} \cap C_{j+k}\right|}{\left|C_{j+k-1}\right|}\right) \\
& R=\lim _{j \rightarrow \infty} \frac{\left|C_{j-1} \cap C_{j}\right|}{\left|C_{j-1}\right|} \quad \lim _{j \rightarrow \infty}\left|C_{j-1}^{c} \cap C_{j} \cap \ldots \cap C_{j+k-1} \cap C_{j+k}^{c}\right|=\lim _{j \rightarrow \infty}\left\{\left|C_{j-1}^{c} \cap C_{j}\right| R^{k-1}(1-R)\right\}
\end{aligned}
$$

$\exists \infty \mathrm{n}$ s.t. the observer knows (p, q) after 4 N 1 Y

I.e. $\exists \infty \mathrm{n}$ such that there is no other pair ($\mathrm{p}^{\prime}, \mathrm{q}^{\prime}$) whose game involves 4 NO and YES

Goal: $\quad \mathbb{P}\left(\bigsqcup_{m=\tau_{1}(C)+1}^{\tau_{2}(C)+1}\left[C_{m-1}^{c} \cap\left(\bigcap_{j=m}^{\tau_{2}(C)+1} C_{j}\right)\right] \neq \emptyset\right)<1 \Rightarrow \frac{R}{1-R^{2}}<1$

$\exists \infty \mathrm{n}$ s.t. the observer knows (p, q) after 4 N 1 Y

I.e. $\exists \infty \mathrm{n}$ such that there is no other pair ($\mathrm{p}^{\prime}, \mathrm{q}^{\prime}$) whose game involves 4 NO and YES

Goal: $\frac{R}{1-R^{2}} \leq 1 \quad R=\lim _{j \rightarrow \infty} \frac{\left|C_{j-1} \cap C_{j}\right|}{\left|C_{j-1}\right|}$

$$
\text { 1-R }=\lim _{j \rightarrow \infty} \frac{\left|C_{j-1} \cap C_{j}^{c}\right|}{\left|C_{j-1}\right|}=\lim _{j \rightarrow \infty}\left|S_{2, j} \cup S_{3, j} \cup S_{4, j} \cup S_{5, j}\right|
$$

$$
\Rightarrow \quad R \leq \frac{4}{9}
$$

Thank you!

