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Abstract. This paper explores a generalization of quantum error detection and correction in
representations of Lie algebras, specifically in a class of irreducible representations of slnC. The
central method introduced is a two-step construction that transforms the problem of finding quan-
tum codes into a classical problem of convex geometry. The purpose of this paper is also two-fold.
First, we wish to build up background for this rarely studied topic and explain essential aspects
of classical and quantum codes that motivate our study. Second, we discuss the interplay of
irreducible representations of slnC with the so-called Lie type graph metric and present code
constructions in representations of slnC for n ≤ 4.
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1. Introduction

The essential question to ask in the theory of classical linear codes is the following. Given the
dimension of a Hamming space n and the intended code distance d, find a distance d code subspace
C in (Z/2)n with dimension as large as possible. If such a code C of dimension k can be found, we
say C is an [n, k, d] code. This is essentially a problem of sphere packing in a discrete metric, and
it invites upper and lower bounds for the packing density.
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In the usual theory of quantum codes, people consider finding a distance d code subspace C in
the Hilbert space (C2)⊗n representing n qubits. It is often the case that we want C to be isomorphic
to (C2)⊗k, so that C encodes k qubits, and in this case we say C is an [[n, k, d]] code. Of course, given
n and d, we want k to be as large as possible. Comparing these two central problems in classical
and quantum codes, we already see a strong analogy.

Some aspects of this analogy arise from practical concerns. For instance, classically we compute
with combinations of two bits 0 and 1, and quantum-ly people wish to compute with a pair of basis
states |0〉 and |1〉 of C2. Thus, limiting to Hilbert spaces of the form (C2)⊗n is negotiable from a
mathematical point of view. The central aspect of the classical-quantum analogy we here explore is
the role of distance in the classical and quantum theories of codes. People have long realized that
finding classical codes in any metric space including the Hamming space is just a game of sphere
packing. Likewise, once we have the error correction and detection criteria for quantum codes,
we can generalize the notion of distance for codes in (C2)⊗n and consider quantum codes in other
so-called quantum metric spaces. We follow the definition of a quantum metric proposed in [9].

Just like it is natural to study upper and lower bounds for sphere packing, we want to construct
quantum codes and try to see if in any sense they are optimal. We primarily do this in the so-called
slnC graph metric spaces, as first studied in [1]. That is, we investigate code subspaces in certain
irreducible representations V of slnC. We think of the action of slnC as quantum errors and based
on this assign a natural quantum metric i.e. a filtration on L(V ) that in turn puts conditions on
code subspaces C of a desired distance d.

We start with brief introductions to classical and quantum codes. Then, we explain a central
two-step construction for quantum codes: in the first step, we find a classical code, but this must
be in service for the second step, as we need to satisfy a convex geometry criterion. The general
form of this two-step construction was proposed in [7]. The remaining half of the paper discusses
quantum metric spaces arising from certain representations of slnC and applications of the two-step
construction in these spaces, as well as a different code construction strategy in the case of sl2C.

2. Classical Linear Codes

We briefly review the theory of classical linear codes, a simple story that turns out to be a rich
source of ideas for quantum codes. The mathematical model for classical codes is as follows. Assume
a finite space of messages X subject to errors. That is, a message x ∈ X has a probability p(x, y) to
be altered to some y ∈ X. A code is a subset C ⊂ X, where elements in C are called codewords, to
be interpreted as the only valid messages. To avoid working with transition probabilities, we further
assume that X is equipped with a metric d such that if d(x′, y′) > d(x, y), then p(x′, y′) � p(x, y).
In other words, an erroneous message is most likely close to the original message in the metric space
(X, d). As a result of this simplification, a code C is a minimum-distance set, with a minimum
distance or simply distance d(C) := minx,y∈C,x ̸=y d(x, y). Similarly, we define the distance of an
error e : X → X to be d(e) := maxx∈C d(x, e(x)). Since the metric d is usually understood in
context, we make a slight abuse of notation and consider a code C with distance d(C) = d, then

(i) errors up to distance < d can be detected;
(ii) errors up to distance < d/2 can be corrected.

Here, an error with distance less than d either results in no change to a codeword or maps it to
some element in X outside C, in which case the erroneous message is declared invalid. As for error
correction, notice that metric balls of radius t < d/2 centered at each point in C are disjoint. If all
errors we wish to correct have distance ≤ t, we can interpret an erroneous message lying in a radius
t closed metric ball to have as original value the center of that ball.
Definition 2.1. LetX be a metric space, and Isom(X) the group of all distance-preserving bijections
of X. Then X is homogeneous if Isom(X) acts on X transitively.

In particular, if X is homogeneous, then balls of radius t around any point x ∈ X has a volume
independent of x. This further assumption allows us to come up with elementary bounds for the
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size of a distance-d code. We shall henceforth also assume that the metric is integer-valued, as all
metrics we are concerned with are.

The Hamming bound is the volume upper bound that for a code C of distance d in a homo-
geneous metric space X,

|C| ≤ |X|
|Bt(x)|

,

where t = bd−1
2 c and |Bt(x)| is the volume of the closed ball of radius t centered at any point x

in X. The inequality holds because error balls of radius t centered at each codeword in C must
be disjoint by the triangular inequality, as required for error correction. When equality is achieved,
such error balls tile X and we say the code C is perfect.

Corresponding to the Hamming upper bound, the most elementary lower bound for classical
codes is the Gilbert-Varshamov bound. Given a metric space X and desired distance d, a lower
bound for a code is an upper bound on the size of the code, below which a code C ⊂ X of distance
d must exist. It is a lower bound for the maximal size of a code in X with distance d. There are two
similar versions of the Gilbert-Varshamov bound, attributed respectively to Gilbert and Varshamov.

Proposition 2.2 (Gilbert Bound for General Codes). Let X be a homogeneous metric space. There
exists a code C in X of distance d if

|Bd−1(0)||C| ≤ |X|.

Here, 0 is an arbitrary point in X that we choose to be in C.

Proof. We greedily construct the code as follows. If Bd−1(0) does not cover X, choose an arbitrary
point x ∈ X\Bd−1(0) as a codeword. If Bd−1(0) ∪ Bd−1(x) does not cover X, then we may choose
another point in the complement as a codeword, such that the pairwise distance between all code-
words chosen so far is at least d. In this way, k codewords can be chosen as long as we do not
exhaust X, i.e., as long as |Bd−1(0)| · k ≤ |X|. □

The Varshamov bound considers a smaller class of codes in a smaller class of metric spaces.

Definitions 2.3. A classical Hamming space X is a product set An where A is a finite set,
equipped with the classical Hamming metric defined by

d((a1, . . . , an), (b1, . . . , bn)) = |{ai | ai 6= bi}|.

Denoting |A| by m, we can endow A with the group structure of Z/m, so that X = (Z/m)n. A code
C that is a submodule of the free Z-module (Z/m)n is called a linear code.

The following proof probabilistically exhibits the existence of linear codes.

Proposition 2.4 (Varshamov Bound for Linear Codes). For a subset Y ⊂ An containing 0, denote
Y \{0} by Y ◦. There exists a k-dimensional linear code C in An of distance d if∣∣B◦

d−1(0)
∣∣|C◦| < |An◦|.

Proof. Choose a k-dimensional submodule C of An uniformly at random. Then, for any x ∈ An◦,
P[x ∈ C] = |C◦|/|An◦|, although the events {x ∈ C} are not independent. By the union bound,

P[d(C) < d] = P[x ∈ C for some x ∈ B◦
d−1(0)]

≤
∑

x∈B◦
d−1(0)

P[x ∈ C] =
∣∣B◦

d−1(0)
∣∣|C◦|/|An◦|

There must exists a k-dimensional linear code C of distance ≥ d if the above probability is less than
1, from which the bound follows. □
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Figure 1. A tiling of the Z2 lattice, or a perfect packing of spheres of radius 1.
The centers of the spheres form a sublattice of distance 3. In fact, this figure also
exhibits a distance 3 perfect code in (Z/5)2.

The above theory can be applied to the prototypical class of classical Hamming spaces Xn =
(Z/2)n consisting of bit strings of length n. Here the Hamming distance between two bit strings is
the number of bits where they differ. Since the Hamming metric is translation invariant, i.e. satisfies
d(x+z, y+z) = d(x, y) for all x, y, z ∈ Xn, there is an associated norm called the Hamming weight,
given by wt(x) := d(x, 0); it simply counts the number of 1’s in the bit string x. The errors on Xn

are described by bit flips that act on Xn by x 7→ x+ e for all x ∈ Xn and some e ∈ Xn; the 1’s in e
indicate bits that flip. The distance of a bit flip error e is simply its weight.

For a linear code C ⊂ Xn, minimum distance reduces to minimum weight, i.e., d(C) =
minc∈C,c ̸=0 wt(c). A k-dimensional linear code in an n-dimensional Hamming space can be com-
pactly described as the image of an n× k generator matrix G, or as the kernel of an (n− k)× n
parity check matrix H. These matrices have nice interpretations in terms of encoding and de-
coding. G encodes k bits of information as a bit string of length n. To decode an erroneous message
x + e, one applies H to get the syndrome H(x + e) = He of the error e; a key point is that
the syndrome does not depend on the message x. If we restrict to a sufficiently small subset E of
errors such that the syndromes He are distinct for distinct e, then we are able to identify e from its
syndrome, and perform error correction by x+ e 7→ (x+ e) + e = x.

From the parity check matrix formalism, one obtains a concrete instance of the error correction
criterion. Recall from (ii) above that a linear code of distance d = 2t+1 can correct errors of weight
at most t. More explicitly, for distinct errors e1 and e2 each of weight at most t, e1 + e2 has weight
more than 0 and less than d, hence it lies outside C. As a result, H(e1 + e2) 6= 0 and He1 6= He2,
so that the distinct syndromes guarantee error correction.

The distance of a linear code can be described in terms of its parity check matrix.

Proposition 2.5. Let C ⊂ Xn be a linear code with parity check matrix H. Then d(C) is the
minimum number of linearly dependent columns of H.

Proof. We know d(C) is the minimum weight of nonzero codewords in C, or the minimum number
of nonzero entries achieved by nonzero bit strings in kerH. The statement follows from the fact that
Hx is a linear combination of columns of H with coefficients the entries of x, for any x ∈ Xn. □

Since perfect codes geometrically correspond to tilings, they are natural objects of investigation.
We provide two simple examples in Figure 1 and the following. As the example in Figure 1 suggests,
the notion of perfect codes remains well-defined in an infinite metric space. We say that a distance
d code C in an infinite homogeneous metric space X is perfect if X is covered by the balls {Bt(y) |
y ∈ C}, where t = bd−1

2 c as before.
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Example 2.6. Let Hr be the r × (2r − 1) matrix where column j is the binary representation of
j. The Hamming code Cr is defined to be the code with Hr as the parity check matrix. Since Hr

has rank r and the minimum number of linearly dependent columns is 3, by Prop. 2.5 we see that
Cr are [2r − 1, 2r − 1− r, 3] codes. The Hamming code is perfect because

|Cr||B1(0)| = 22
r−1−r ·

((2r − 1

0

)
+

(
2r − 1

1

))
= 22

r−1 = |X2r−1|.

3. Quantum Error Correction and Quantum Metric

3.1. Quantum Errors. A quantum vector state |ψ〉 in a complex Hilbert space H has a much more
subtle nature compared to a classical bit string. What’s more, quantum vector states are susceptible
to a continuum of errors modelled by linear operators E ∈ L(H) that maps |ψ〉 to E |ψ〉, where
L(H) is the space of bounded linear operators on H. We are only interested in finite dimensional
Hilbert spaces, so H = Cn and L(H) = Mn(C). It is perhaps surprising that to detect or correct a
subspace E of quantum errors, it suffices to consider a finite collection of errors that is a basis for E .
This discretization of errors is a crucial fact that makes quantum error correction possible.

The physical description of quantum error correction is complicated by entanglement. For two
quantum systems A and B with corresponding Hilbert spaces HA and HB , the joint system AB is
described by the Hilbert space HA ⊗HB . Physically, we may have access only to the subsystem A,
for instance when B represents the environment. In this case, vector states are no longer sufficient to
describe the state of a subsystem. If |ψ〉 is a vector state in HA ⊗HB , then the corresponding state
of the subsystem A is described by the density operator ρA = trB(|ψ〉〈ψ|), where trB denotes
partial trace over HB . It is always possible to choose an appropriate basis and write ρA in diagonal
form as

ρA =
∑
i

pi |i〉〈i| .

This allows the realization of ρA as an ensemble of the vector states |i〉, each prepared with probability
pi. For a density matrix ρ, a quantum error is a quantum operation described by a collection of
matrices {Ea} that satisfies

∑
aE

∗
aEa = I and acts by

ρ 7→
∑
a

EaρE
∗
a . (3.1)

In terms of the ensemble interpretation of density matrices, this general form of quantum error acts
on each |i〉 in the ensemble by |i〉 7→ Ea |i〉 with probability |Ea |i〉|2.

Warning 3.2. There is ambiguity in the choice of the ensemble {|i〉} to represent a density matrix,
and the operators {Ea} to represent a quantum operation.

Note that the above general description of quantum errors, just like density matrices, can be
derived from the usual vector state formalism of quantum mechanics. That is, when a quantum
system A is part of a product system AB with B interpreted as the environment, errors are caused by
unitary evolution of the joint system. If we denote the initial state of A as |ψ〉A and the environment
as |0〉B , then in terms of an orthonormal basis |a〉B of HB , a unitary transformation on HA ⊗HB

can be written as
|ψ〉A ⊗ |0〉B 7→

∑
a

Ea |ψ〉A ⊗ |a〉B (3.3)

for some Ea ∈ L(HA), where unitarity is equivalent to the completeness relation
∑

aE
∗
aEa = I.

After taking outer product and tracing out B, we recover the previous description 3.1 of quantum
operation. Conversely, any quantum operation in the form of 3.1 can be realized as the result of
looking only at subsystem A when the joint system evolves as in 3.3. These two descriptions of
quantum operations match the physical requirement for a quantum operation to be completely-
positive and trace-preserving, in a result called Stinespring’s dilation theorem.
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The operator formalism of quantum states and quantum errors incorporates the simple error
model as a linear transformation |ψ〉 7→ E |ψ〉 — if we let ρ = |ψ〉〈ψ| and {Ea} to consist of a single
operator E. Since a quantum state can be entangled in the sense discussed above, the simple error
model is mathematically and physically less general.

3.2. Error Correction and Detection. Similar to classical linear codes, a quantum code is
a subspace C of the Hilbert space in question. Recall that to correct or detect a classical error,
we apply the parity check matrix H to x + e. This syndrome measurement of the erroneous state
does not change the state. On the other hand, we do not have full access to a quantum state, and
quantum measurement necessarily collapses the measured state. But this complication is also an
asset that allows us to discretize the errors.

Consider first nondegenerate quantum codes, whose correction procedure captures the spirit
of the general scheme. In this case, it is possible to choose an orthonormal basis {|i〉} of C and a
collection of operators {Ea} such that the error in question has the form 3.1 and

〈i|E∗
aEb|j〉 = δabδij .

The analog of disjoint error balls in classical error correction for a nondegenerate quantum code
C is the mutually orthogonal error subspaces Ha = EaC. If any |ψ〉 ∈ C is subject to the error
|ψ〉〈ψ| 7→

∑
aEa |ψ〉〈ψ|E∗

a , the orthogonality of Ha allows us to make a measurement that yields
one of the density matrices Ea |ψ〉〈ψ|E∗

a , or equivalently one of the vector states Ea |ψ〉. The
measurement result discloses Ea, and error correction is completed by applying E∗

a .
The general criterion for quantum error correction is more subtle. Under the assumption that a

quantum error E and a quantum error recovery procedure R are both quantum operations, A code
C is said to correct E if there exists R such that

(R ◦ E)(ρ) = ρ

for any ρ that can be formed as an ensemble of states in C.
Remark 3.4. If we consider more general quantum operations and weaken

∑
aE

∗
aEa = I to∑

aE
∗
aEa ≤ I, then the above characterization of error recovery may also be weakened to

(R ◦ E)(ρ) ∝ ρ.
We have the following key result.

Theorem 3.5 (Quantum error correction criterion). Let PC be the projector associated with a
quantum code C. Then a quantum operation represented by operators {Ea} can be corrected if and
only if for some complex numbers εab,

PCE
∗
aEbPC = εab PC ;

equivalently, if and only if for an orthonormal basis {|i〉} for C,
〈i|E∗

aEb|j〉 = εab δij . (3.6)
Here, εab form the entries of a Hermitian matrix.
Proof. The original paper is [6]. See also section 10.3 of [10] and section 7.2 of [11]. □

The criterion for quantum error detection is analogous to the correction criterion, while the
detection protocol requires only a measurement.
Theorem 3.7 (Quantum error detection criterion). Suppose a quantum error is described by a
collection of operators {Ea}. Then a code C can detect the error if for some εa ∈ C

PCEaPC = εaPC ;

or equivalently, for an orthonormal basis {|i〉} of C,
〈i|Ea|j〉 = εaδij . (3.8)

The constant εa is called the slope of the error Ea.



CLASSICAL CONSTRUCTION OF QUANTUM CODES 7

Proof. Suppose the above criterion is satisfied. For any |ψ〉 ∈ C, Ea |ψ〉 = εa |ψ〉+
∣∣ψ⊥

a

〉
, where

∣∣ψ⊥
a

〉
is some vector perpendicular to C. Then the error operation is

|ψ〉 ⊗ |0〉B 7→
∑
a

Ea |ψ〉 ⊗ |a〉B = |ψ〉 ⊗
(∑

a

εa |a〉B
)
+

∑
a

( ∣∣ψ⊥
a

〉
⊗ |a〉

)
. (3.9)

Denote by ρA the contaminated state of the subsystem A obtained by taking outer product and
partial trace of 3.9. Then we may perform a measurement that asks whether ρA is supported in
C using the projectors {PC , I − PC}. There are two outcomes: either the answer is yes and the
post-measurement state is proportional to PCρAPC ∝ |ψ〉〈ψ|, equivalently just the vector state |ψ〉;
or the answer is no. In the first case we actually recovered the original state, and in the second case
we know an error occurs and discard the erroneous state. □

The similarity of the correction and detection criteria is to our great advantage. For one thing,
the discretization of errors mentioned at the beginning of this section follows from the linearity of
the above criteria.

Theorem 3.10. Suppose a quantum error E described by operators {Ea} on a code C can be corrected
(resp. detected), and F is a quantum error with operation elements {Fb}, where each Fb is a linear
combination of Ea. Then C can also correct (resp. detect) F .

Proof. One easily checks that 3.6 and 3.8 both hold for the collection {Fb} if they hold for {Ea},
with different constants ε. □

Remark 3.11. In fact, by Theorem 10.2 of [10], the same recovery operation that corrects E also
corrects F . The detection protocol by definition does not depend on the error.

If a quantum operation E is described by operators {Ea}, denote the subspace of matrices
spanned by {Ea} also as E . As a consequence of the above theorem, to correct (resp. detect) any
error whose operation elements are supported in E , it suffices to check the error correction (resp.
detection) criteria for {Ea} or any spanning set {Fb} of E . In particular, errors E ∈ E acting simply
by |ψ〉 7→ E |ψ〉 are special cases of quantum operations that have the form |ψ〉〈ψ| 7→ E |ψ〉〈ψ|E∗,
hence can also be corrected (resp. detected).

For an n-dimensional Hilbert space Hn, the quantum errors E we consider are subspaces of
Mn(C), with the understanding that we mean quantum operations with operation elements sup-
ported in E . Looking back at the criteria 3.6 and 3.8, we see that the slope is best defined with
respect to an error space E and a code C as a linear functional E → C. But linearity implies that
we only need to check the criteria against a convenient basis for E and C, with a finite number of
constants εa involved.

3.3. Quantum Metrics and Code Distances. We are now ready to introduce a notion of distance
that plays a similar role as the metric used in the theory of classical codes. The physically most
relevant Hilbert space to consider is the n-qubit space H⊗n

2 . It is natural to assume that each qubit
experiences a small error I + ϵEi, so that the overall error is

n⊗
i=1

(I + ϵEi) = I + ϵ
(
E1 ⊗ I⊗(n−1) + I ⊗ E2 ⊗ I⊗(n−2) + · · ·+ I⊗(n−1) ⊗ En

)
+O(ϵ2).

When ϵ is small, we see that the number of non-identity entries in an error operator measures its
severity. Since tensor products of the identity and the Pauli matrices {I,X, Y, Z}⊗n span L(H⊗n

2 ),
it is customary to restrict attention to these errors, called the multi-Pauli operators. Define the
weight of a Pauli operator as its number of non-identity entries. This definition shares form and
motivation with the weight of a classical bit flip error. Thanks to the discretization of errors we
saw above, it is natural to observe that by the weight of multi-Pauli operators we actually mean a
filtration on the space of errors L(H⊗n

2 ), as noted in [7] and generalized in [9]. Again, we are only
concerned with finite dimensions.
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Definitions 3.12. Let H be a finite-dimensional Hilbert space. A quantum metric on L(H) is a
filtration i.e. a one parameter family of subspaces {Vt}t≥0 of L(H) satisfying

(i) Vs ⊂ Vt for s ≤ t;
(ii) VsVt ⊂ Vs+t;

(iii) V∗
t = Vt for all t;

(iv) I ∈ V0.

When we only consider the parameters t ∈ N and Vt = Vt is the linear span of t-fold products
of elements in some subspace V ⊂ L(H), we say {Vt} is a quantum graph metric.

The name “graph” is used due to analogy with graph distance. We see that the metric we want
to define with multi-Pauli operators is the quantum Hamming metric where

Vt = span{E1 ⊗ · · · ⊗ En | Ei ∈M2(C) and Ei 6∝ I for at most t values of i}
= span{multi-Pauli operators of weight at most t}.

Equivalently, the quantum Hamming metric is the quantum graph metric with

V = span{multi-Pauli operators of weight at most 1}.

Code distance is defined in most of the quantum computing literature with respect to the quantum
Hamming metric, but it can be easily generalized.

Definition 3.13. Given a Hilbert space H and an integer-indexed quantum metric {Vt}t∈Z≥0
on

L(H), a code C ⊂ H has distance d if for all E ∈ Vd−1, the detection criterion 3.8 is satisfied.

That is, a distance d code can detect errors up to distance d−1. Since VtVt ⊂ Vd−1 for t = bd−1
2 c,

from the correction criterion 3.6 we see that a distance d code can correct errors up to distance t.
Thus, given a quantum metric, we may talk only about error detection with correction implied.

This language of distance suggests an alternative definition of quantum metric as a function
D : L(H) → [0,∞] satisfying

(i) D(A+B) ≤ max(D(x), D(y));
(ii) D(λA) ≤ D(A) for λ ∈ C;
(iii) D(AB) ≤ D(A) +D(B);

(iv) D(A∗) = D(A);
(v) D(I) = 0.

The two definitions are bijectively corresponded via Vt = {A ∈ L(H) | D(A) ≤ t} and D(A) =
min{t ≥ 0 | A ∈ Vt}, but in the quantum case, the metric is on the space of operators.

This difference highlights the fact that in contrast to the classical case where codewords reside
in a metric space, in the quantum case code distance can only be defined with respect to error
correction and detection. Nevertheless, we have the same statement as in the classical case that
a distance d code can detect errors up to distance d − 1 and correct errors up to distance bd−1

2 c.
What’s more, the classical Hamming bound translates to the quantum Hamming bound that
says that for a nondegenerate quantum code C ⊂ H, if C can correct E then

dim E · dim C ≤ dimH.

Here, dim E is analogous to the size of an error ball. The bound follows from the definition that for
a nondegenerate code C, the error subspaces EaC are orthogonal where {Ea} is a basis of E . We
similarly say that a nondegenerate quantum code is perfect if it satisfies the quantum Hamming
bound with equality. As for code lower bounds, we will see a quantum code construction motivated
by Gilbert’s classical lower bound in the following section.
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4. A Two-Step Construction for Quantum Codes

4.1. Detecting One Error. The formulation of the error detection condition 3.8 suggests that it
would be convenient to first consider a basis consisting of Hermitian operators of the error space
we wish to correct, and find basis elements for C in terms of the simultaneous eigenbasis for these
Hermitian operators. As an example, consider the simple case of detecting one error on H = Cn,
or more precisely detecting a two-dimensional error space E . Given that E = E∗, we can consider a
basis {I, E} of E where E is Hermitian, and it suffices to check the error detection condition for E.

Label the real eigenvalues of E in order as λ1 ≤ · · · ≤ λn, and the corresponding eigenstates as
|1〉 , . . . , |n〉. If we pair up the eigenstates and define |k, l〉 = α |k〉 + β |l〉 for some coefficients α, β
satisfying the normalization condition |α|2 + |β|2 = 1, then the states |k, l〉 and |k′, l′〉 for disjoint
pairs {k, l} and {k′, l′} are orthogonal. Moreover, E |k, l〉 and |k′, l′〉 are orthogonal, so that if we
construct a subspace C of Cn with {|k, l〉} as an orthonormal basis, to satisfy 3.8 it remains only to
ensure that 〈k, l|E|k, l〉 = ε for some slope ε. That this slope cannot depend on the basis element
|k, l〉 is the difficulty.

In this case it is not difficult after all. One easily calculates that 〈k, l|E|k, l〉 = |α|2λk + |β|2λl
lies in the interval [λk, λl] if k < l. Pick ε as the median of the eigenvalues λ1, . . . , λn. By choosing
symmetric elements {k, l} as a pair with k+ l = n+1 and appropriate coefficients α and β for each
pair, we can ensure that 〈k, l|E|k, l〉 = ε. When n is odd we may also include |dn/2e〉 as a basis
element. The dimension of the code C we find is the number of orthonormal basis elements, which
is dn/2e.

Remark 4.1. If the median eigenvalue is degenerate when n is odd, or if at least one of the two middle
eigenvalues is degenerate when n is even, it is easy to see that C can be constructed with dimension
larger than dn/2e. The following proposition also applies to these cases after slight modification.

It turns out that this strategy is optimal.

Proposition 4.2. Suppose all eigenvalues λ1, . . . , λn of E are distinct in the above setting. Then a
code that detects E can have dimension at most dn/2e.

Proof. First, we observe that the Hermiticity of E ensures that the associated slope ϵ must be real.
The error detection criterion can be equivalently formulated using Fε = E−εI. That is, with respect
to the bilinear form defined by Fε, C detects E if it is isotropic. Note that Fε is a real quadratic
form diagonal in the eigenbasis {|1〉 , . . . , |n〉}, and recall that the signature of a real quadratic form
is a triple (n0, n+, n−), where n0, n+, n− respectively denotes the number of zero, positive, negative
entries on the diagonal. It is a straightforward linear algebra fact that the dimension of a maximal
isotropic subspace is n0 +min{n+, n−}.

If we choose ε ∈ (λk, λk+1), then the signature of Fε is (0, n − k, k). If we choose ε = λk, then
the signature is (1, n− k, k − 1). Thus we see that the choice of ε as the median of the eigenvalues
is optimal and the dimension of an isotropic subspace is at most dn/2e. □

4.2. Detecting D Errors. To find a code that detects a larger error space, a two-step construction
is proposed in Theorems 3 and 4 of [7]. First, find an intermediate subspace B ⊂ H such that the
error space restricted to L(B), F = PBEPB, generates a commutative algebra. Suppose dimB = m
and dimF = D + 1; we need to detect D linearly independent errors in addition to the identity.
Since E = E∗ by assumption, we have F = F∗ and it is possible to find a simultaneous eigenbasis of
B with respect to which F acts diagonally. Label the simultaneous eigenstates as |1〉 , . . . , |m〉, and
write F = span{F0 = I, F1, . . . , FD} where each Fj is Hermitian. Let

F⃗ = (F1, . . . , FD),

so that F⃗ |k〉 = λ⃗k |k〉 for some λ⃗k ∈ RD.
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Remark 4.3. The use of the letter D here differs by one from the same letter in [7]. The result of
Theorem 4 in [7] can be slightly improved because errors proportional to the identity automatically
satisfy the detection criterion.

The second step in this construction is a generalization of the previous example. Consider a
partition of {1, . . . ,m} into disjoint subsets Yi. For each Yi define

|ψi〉 =
∑
k∈Yi

√
βk
i |k〉 ,

where the nonnegative coefficients βk
i satisfying the normalization condition

∑
k∈Yi

βk
i = 1 are to be

chosen later. The states |ψi〉 are orthonormal, and 〈ψi|F⃗ |ψj〉 = 0 if i 6= j. The remaining challenge
to satisfy the detection criterion is to find a generalized slope ε⃗ ∈ RD such that

〈ψi|F⃗ |ψi〉 = ε⃗ ∀i. (4.4)

Note that 〈ψi|F⃗ |ψi〉 =
∑

k∈Yi
βk
i λ⃗k is a convex sum and can take any value in the convex hull

spanned by {λ⃗k}k∈Yi
with appropriate choice of the coefficients βk

i . Thus 4.4 is possible if and only
if the convex hulls spanned by {λ⃗k}k∈Yi

for all i have a common intersection. To maximize the
dimension of a code C with an orthonormal basis of the form |ψi〉 is to maximize the size of the
partition {Yi} of {1, . . . ,m} such that this convex geometrical property holds. This problem can in
general be solved thanks to the result in [12].
Theorem 4.5 (Tverberg’s theorem). Given m points in RD, a partition of the m points into r
disjoint subsets with intersecting convex hulls is possible if

m > (D + 1)(r − 1)

Remark 4.6. For a general configuration of points, Tverberg’s theorem is optimal just by counting
the number of variables and constraints. Here we relax the condition βk

i ≥ 0 to βk
i ∈ R, and all

other variables and equations are over the reals. Let the configuration of points {λ⃗k} be given. We
have D degrees of freedom in choosing a point ε⃗ in the common intersection of the convex hulls, and
we need to make another m choices of the coefficients βk

i . The linear constraints include r equations∑
k∈Yi

βk
i = 1 and rD equations

∑
k∈Yi

βk
i λ⃗k = 1. Assuming that the linear system has full rank for

a general point configuration {λ⃗k}, the system is over determined if m+D < r + rD; equivalently
if m ≤ (D + 1)(r − 1).

As a result of Tverberg’s theorem, if the intermediate space B in this two-step construction has
dimension m and the intermediate error space F has dimension D + 1, then there exists a code C
detecting E such that

dim C = d m

D + 1
e

Since we will use this construction extensively, three caveats are in order. First, unlike in the special
case of detecting one error, when the error space has higher dimension, other code constructions
might beat this two-step strategy in maximizing code dimension.

Second, maximizing the dimension of C depends on maximizing the dimension of the interme-
diate space B. In [7], the authors are concerned with a general error space E . They use a greedy
construction for B in the spirit of the constructive Gilbert bound for not necessarily linear classical
codes (2.2). In more detail, this construction crudely takes F = E and D+1 = dim E . To ensure that
E acting on B is commutative, we want a basis {|k〉} of B with respect to which E0 = I, E1, . . . , ED

are diagonal. Suppose we have already chosen |1〉 , . . . , |k〉 acted diagonally by E0, . . . , ED. As long
as k(D+1) < dimH, we may choose another basis element |k + 1〉 in the orthogonal complement of
Ea |l〉, a = 0, . . . , D, l = 1, . . . , k. Thus the resulting dimension of B is at least ddimH

dim E e. We will use
the idea of this greedy construction in finding the intermediate space B, but we can often do better
than ddimH

dim E e because the error space F restricted to B can be smaller than E .
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Third, when the generalized eigenvalues {λ⃗k} are placed in some special positions in RD, it is
possible to partition them into more disjoint subsets with intersecting convex hulls than promised
by Tverberg’s theorem. When such a partition into r disjoint subsets exists for r > d m

D+1e, we have
a super-Tverberg behavior, and a point in the common intersection of the convex hulls is called a
super-Tverberg point.

4.3. The Two-Step Construction of CSS Codes. Although this point is only implicit in most
discussions of the CSS Codes, the two-step construction of a CSS code is exactly an example of the
two-step construction we discussed above. For an introduction to CSS codes and stabilizer codes,
see Chapter 10 in [10] and Chapter 7 of [11], or any other relevant physical text on quantum codes.

Example 4.7. Consider the subspace of the 4-qubit Hilbert space stabilized by Z⊗4 and X⊗4. The
intermediate subspace B stabilized by Z⊗4 has basis elements associated to length 4 bit strings of
even weight. Explicitly, they are

|0000〉 , |1111〉 , |1100〉 , |0011〉 , |1010〉 , |0101〉 , |1001〉 , |0110〉 .
Since Y = iZX is a composition of a bit flip and a phase flip, we see that any weight one multi-Pauli
that involves X or Y maps a basis element above to |x〉 where x is a bit string of odd weight, hence
|x〉 is orthogonal to B. That is, if the error space E we wish to detect is V1 in the quantum Hamming
metric, then the weight one multi-Pauli elements involving X and Y vanish in the restricted error
space F = PBEPB. Therefore, F is spanned by the identity and weight one multi-Pauli elements
involving only Z and I, such as Z ⊗ I ⊗ I ⊗ I, which all commute.

In the second step where we take C to be the subspace of B stabilized by X⊗4, we cut the
dimension further by half, as usual when taking simultaneous eigenstates of stabilizers; this is a
super-Tverberg behavior. Here m = 8 and D = dimF − 1 = 4, so Tverberg’s theorem guarantees a
code of dimension d 8

4+1e = 2. But we actually have a 4-dimensional code C with basis elements
|0000〉+ |1111〉 , |1100〉+ |0011〉 , |1010〉+ |0101〉 , |1001〉+ |0110〉 .

Since each basis element of C is mapped outside C by each basis element of F , we see that the
corresponding super-Tverberg point is ε⃗ = 0⃗.

This example illustrates how general CSS codes align with our scheme. The CSS codes are
constructed from classical codes. Given the n-qubit Hilbert space H⊗n

2 , suppose we have two classical
codes CZ and CX that are subspaces of (Z/2)n satisfying C⊥

X ⊂ CZ and d(CZ), d(CX) ≥ d. The CSS
code constructed from CZ and CX is a quantum Hamming distance d quantum code that associates
a codeword to every coset in CZ/C

⊥
X . Equivalently, a CSS code associated with CZ and CX is a

special subclass of the stabilizer codes where the stabilizers consist of elements in the n-qubit Pauli
group that is either a tensor product of Z’s and I’s or a tensor product of X’s and I’s. For a length
n bit string e, let Z̄e denote the multi-Pauli whose k-th component is Z if the k-th bit of e is 1,
and I if the k-th bit of e is 0; define X̄e similarly. If HZ and HX are respectively the parity check
matrices of CZ and CX , then the stabilizers of the associated CSS code are Z̄e where e are the rows
of HZ and X̄e where e are the rows of HX .

In the first step, consider the subspace stabilized by the Z̄e’s. Since each Z acts by flipping
phase, |x〉 where x ∈ (Z/2)n is stabilized by Z̄e if and only if x · e = 0. As a result, the intermediate
subspace is B = C[CZ ], the subspace spanned by |x〉 for x ∈ CZ . Suppose a multi-Pauli Ē consists
only of I,X, Y and has weight less than d = d(CZ). Then Ē ∝ X̄e where e has weight less than d,
and Ē |x〉 ∝ |x+ e〉 for x ∈ CZ . Since CZ has distance d, x+ e 6∈ CZ , hence |x+ e〉 6∈ C[CZ ]. This
shows that the restricted error space F is spanned by multi-Pauli elements involving only Z and I
with weight less than d, which all commute.

In the second step, we need to detect errors of the form Z̄e where e has weight less than d. Since
d(CX) ≥ d, there exists a row e′ of HX such that e · e′ 6= 0; otherwise e would lie inside CX . Since
Z and X anticommute, this implies that Z̄e and X̄e′ anticommute, so one knows that Z̄e can be
detected by the general formalism of stabilizer codes. In fact, the slope or the super-Tverberg point
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in the second step of CSS code construction is always the zero vector: since any |ψ〉 in the resulting
CSS code is stabilized by X̄e′ ,

〈ψ|Z̄e|ψ〉 = 〈ψ|Z̄eX̄e′ |ψ〉 = −〈ψ|X̄e′Z̄e|ψ〉 = −〈ψ|Z̄e|ψ〉 ,

so 〈ψ|Z̄e|ψ〉 = 0. We have shown that the two-step construction is a generalization of a well-known
quantum code construction, and we proceed to apply this generalized method in geometries arising
from Lie algebra representations.

5. Quantum Error Detection in Irreducible Representations of slnC

5.1. Lie Type Graph Metric Spaces. The preceding discussions already suggested that from the
mathematical point of view, finding quantum codes that can correct or detect errors only requires
a Hilbert space equipped with a quantum metric, and while the n-qubit quantum Hamming space
is both relatively simple and extremely rich, there is no need to restrict attention to these quantum
metric spaces.

Here we are interested in the cases where the Hilbert space in question is a representation of a
matrix Lie algebra, equipped with a Lie type graph metric. Assume that g = gC is a complex
Lie algebra of traceless matrices; then the Lie type graph metric for a representation dρ of g is the
quantum graph metric defined by V1 = dρ(g) ⊕ CI and Vt = span(V1)

t. In fact, we only consider
g = slnC, and we call the associated Lie type graph metric spaces slnC-metric spaces. This setting
sounds abstract, but in practice, methods of code construction we find remain elementary. Thus we
will use many Lie theoretical facts without proof, with details to be found in [3] and [5].

A Lie algebra representation only specifies a module structure on a vector space, and we need to
impose an inner product. This is done as follows. Given an n-dimensional Lie algebra g, gR := g∩un
is also a Lie algebra. Here gR is called a real form of g, for g = C⊗R gR. This identity holds because
un consists of anti-Hermitian n×n matrices and any matrix E ∈Mn(C) can be written as E = X+iY
for a pair X,Y ∈ un:

E =
E − E∗

2
+ i

E + E∗

2i
.

Observe that there is a one-to-one correspondence between representations of g and gR. Although
real forms in general are not unique, this particular real form gR is canonical in that as U(n) is
compact, G := egR ⊂ U(n) is a compact Lie group. Assume that the Lie algebra representation dρ
of gR one gets by restricting the representation of g is the differential of a Lie group representation
ρ of G. Then by the compactness of G, we choose the inner product such that the action of G is
unitary. Under such an inner product, unitarity of ρ implies that for all X ∈ gR,

(etdρ(X))∗ = ρ(etX)∗ = ρ(etX)−1 = e−tdρ(X) ∀t ∈ R,

so that after differentiation at t = 0, dρ(X)∗ = −dρ(X). Since X = −X∗ by the definition of gR,
we get the requirement

dρ(X)∗ = dρ(X∗). (5.1)
Since here g = slnC, we have gR = sun. Given a representation V of slnC, we shall subsequently
choose an inner product satisfying 5.1 such that the action of SU(n) on V is unitary.

5.2. Irreducible Representations of slnC. We will be interested in the following class of irre-
ducible representations of slnC. We start with sl2C, which has a canonical basis

H =

(
1 0
0 −1

)
E =

(
0 1
0 0

)
F =

(
0 0
1 0

)
.

Let HN = C[x, y]N be the space of degree N homogeneous polynomials in two variables, where the
action of H, E, F are given by

h := dρ(H) = x∂x − y∂y e := dρ(E) = x∂y f := dρ(F ) = y∂x.
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Up to an isomorphism switching (x, y) 7→ (y,−x), this action restricted to su2 can be checked to be
the differential of the action of SU(2) on C[x, y]N by

(ρ(g)ϕ)(x, y) = ϕ(g−1

(
x
y

)
) for g ∈ SU(2), ϕ ∈ C[x, y]N ,

where the action of g−1 is simply by 2 × 2 matrix multiplication. In honor of the inspiration from
physics and simply for convenience, we keep the Dirac notation and write xkyN−k as

∣∣xkyN−k
〉
.

The unitarity condition 5.1 is satisfied if we define an inner product such that 〈xkyN−k|xN−lyl〉 =
δkl/

(
N
k

)
, as will be shown more generally below.

It is well-known that the representations above indexed by N are exactly all the irreducible
representations of sl2C. For slnC where n ≥ 3, there is also a similar class of irreducible represen-
tations on the space of degree N homogeneous polynomials in n variables, denoted C[x1, . . . , xn]N ;
but there exist other irreducible representations. Let 1ij denote the n × n matrix with 1 in the ij
entry and 0 elsewhere, and let Hij be the n× n traceless diagonal matrix 1ii − 1jj . Then the action
of slnC is given by

hij := dρ(Hij) = xi∂i − xj∂j eij := dρ(1ij) = xi∂j fji := dρ(1ji) = xj∂i i < j.

The inner product we choose is such that distinct monomials are orthogonal and

〈xk1
1 · · ·xkn

n |xk1
1 · · ·xkn

n 〉 = 1
/(

N

k1, . . . , kn

)
.

It is easily checked that the unitarity condition is satisfied for the canonical basis elements; we only
need to observe that hij acts diagonally and〈

xk1
1 · · ·xki+1

i · · ·xkj−1

j · · ·xkn
n

∣∣∣ (eij ∣∣∣xk1
1 · · ·xki

i · · ·xkj

j · · ·xkn
n

〉)
=
(
fji

∣∣∣xk1
1 · · ·xki+1

i · · ·xkj−1

j · · ·xkn
n

〉)∗ ∣∣∣xk1
1 · · ·xki

i · · ·xkj

j · · ·xkn
n

〉
=

k1! · · · (ki + 1)! · · · kj ! · · · kn!
N !

.

This class of irreducible representations can be understood geometrically. Define

|k1 · · · kn〉 :=
(

N

k1, . . . , kn

)1/2 ∣∣∣xk1
1 · · ·xkn

n

〉
, (5.2)

so that |k1 · · · kn〉 form an orthonormal basis of C[x1, . . . , xn]N . In this notation, Figure 2 completely
describes the action of sl3,C on C[x1, x2, x3]3. For instance, the edge connecting |111〉 and |210〉
indicates that e13 |111〉 = x1∂3

√
3 |x1x2x3〉 =

√
3
∣∣x21x2〉 =

√
2 |210〉, and similarly f31 |210〉 =√

2 |111〉. To better understand the meaning of Figure 2, we need a more abstract description of
these representations on homogeneous polynomials.

Let slnC act on the n-dimensional vector space V simply by matrix multiplication; V is called
the defining representation of slnC. It is straightforward to observe that the representation
C[x1, . . . , xn]N is isomorphic to the representation SymN (V ), where each xi corresponds to the
standard basis element 1i of V , and the coefficient of differentiation corresponds to the coefficient
derived from the product rule when slnC acts on SymN (V ). In either description, it is clear that the
subspace of traceless diagonal elements in slnC, denoted h, remains diagonal in the representations.
The monomials in C[x1, . . . , xn]N , equivalently the basis of SymN (V ) obtained by equivalence classes
of tensor products of the standard basis elements of V , form a simultaneous eigenbasis of h.

The diagonal elements in h play a crucial role in subsequent analysis. First, consider the case of
sl2C, where the commutation relations satisfied by H,E, F are also satisfied by h, e, f that act on a
given representation H, as Lie algebra representations preserve the Lie bracket:

[h, e] = 2e [h, f ] = −2f [e, f ] = h.
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|300〉

|030〉

|003〉

|111〉
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√
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√
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√
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√
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√
3

L1

L2

L3

Figure 2. Weight diagram for C[x1, x2, x3]3 as an irreducible representation of
sl3C; equivalently for Sym3(V ) where V is the defining representation of sl3C.
Indicated on the edges are the coefficients of the translating actions of 1ij , i 6= j.

Using these relations we obtain the key fact that e and f permute the eigenspaces of h and respec-
tively raises or lowers the eigenvalue. If hv = α · v for some v ∈ V and α ∈ C, then

h(e(v)) = (eh+ [h, e])v = (α+ 2) · ev h(f(v)) = (fh+ [h, f ])v = (α− 2) · fv. (5.3)

At some point the action of e will annihilate a highest weight eigenvector v, for instance when
e = x∂y acts on xN ∈ C[x, y]N ; similarly f = y∂x annihilates yN .

The general case works as follows. The space of traceless diagonal elements h act on g = slnC
by restricting the adjoint representation of g on itself. That is, h ∈ h acts by [h,−]. Since elements
in h commute, this action splits g into eigenspaces g = h⊕

(⊕
α gα

)
, where each α is a generalized

eigenvalue i.e. an element in h∗ such that [h, v] = α(h) · v for v ∈ gα. The elements α are called
roots of g and the eigenspaces gα root spaces.

Given a representation V of g, the action of h also splits V into eigenspaces V =
⊕

β Vβ . Here
the linear functionals β are called the weights of the representation V and Vβ the weight spaces.
If e ∈ gα and v ∈ Vβ for some α, β ∈ h∗, then for h ∈ h we have the key computation

h(e(v)) = ([h, e] + eh)v = (α(h) + β(h)) · e(v).

That is, elements in the root space gα map elements in the weight space Vβ to the weight space
Vα+β ; this action is often visualized in h∗ as a translation of α by β.

For g = slnC, observe that if D = (di) is a diagonal matrix and M = (mij) is another matrix,
then the ij entry of [D,M ] is (di − dj)mij . From this we find that the decomposition of slnC into
root spaces is

slnC = h⊕
⊕
i ̸=j

gLi−Lj
,

where {Li} is the restriction to h of the dual to the standard diagonal basis, with Li(1jj) = δij .
Each gLi−Lj

is the linear span of 1ij .
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Now we restrict attention to the representations SymN (V ) of slnC discussed above. Note that
the weights of the defining representation V are just {Li}i=1,...,n with weight vectors the standard
basis of V , so that by the product rule, the weights of SymN (V ) are the N -th symmetric powers of
{Li}i=1,...,n. Since slnC is traceless, {Li}i=1,...n satisfy

∑n
i=1 Li = 0, so we can represent {Li}i=1,...n

in h∗ as the position vectors of a regular (n− 1)-simplex centered at the origin. Figure 2 illustrates
the case n = 3. In this weight diagram, each node indicates a weight space. The action of a root
vector proportional to 1ij in gLi−Lj

translates a weight vector by Li − Lj or annihilates it. For
instance, 113 act by span{|012〉} 7→ span{|111〉} 7→ span{|210〉} 7→ 0.

The weight diagram can be made into a graph, where there is an edge between two vertices
representing weight spaces if the action of some element in g\h translates one weight space to the
other. From this description of the errors, we see that if we use the two-step construction described in
the previous section, then the first step can be done readily. That is, since each basis error translates
a weight space to another within graph distance ≤ 1, the image of a weight vector under errors in
Vt = gt cannot have support on a weight space of graph distance more than t away. The problem of
finding an intermediate subspace reduces to the classical problem of finding a minimum distance set
in the weight diagram equipped with the graph metric. We state this result for g = slnC, although
the above argument also works for other Lie type graph metric spaces; see Lemma 3.2.1 in [1].

Proposition 5.4. In the slnC metric spaces SymN (V ) where V is the defining representation of
slnC, let B be the subspace spanned by weight vectors associated to a minimum distance d set in the
weight diagram. Then the error set F = PBVd−1PB is a commutative algebra.

6. Quantum Codes in Symmetric Power Representations of slnC

We apply the recipe introduced in the preceding sections to construct codes in symmetric power
representations of slnC. In the case of sl2C, we also discuss another possible, in fact in this case better
code construction that plays on the canonical inner product we choose to make the representation
unitary. It is possible to consider generalizations of this strategy to higher n, but we do not work in
this direction.

As before, we equip a relevant representation with the canonical inner product and call the
resulting Hilbert space H. We are mostly interested in the asymptotic behavior of code dimension
as dimH → ∞, but we also consider some interesting special cases when dimH is small.

6.1. Codes in String Representations of sl2C. Consider the case n = 2. Note that the or-
thonormal eigenstates we found in 5.2 are also eigenstates of h, and we can instead label them by
eigenvalues as |−N〉 , |−N + 2〉 , . . . , |N − 2〉 , |N〉. This representation on C[x, y]N is nicknamed a
string representation because nodes in the weight diagram form an arithmetic progression, and e
and f map nodes to their neighbors as observed in 5.3. This new labeling is related to the old one
by

|2k −N〉 =
(
N

k

)1/2 ∣∣xkyN−k
〉

In the new labelling, we find that if e |l〉 = A |l + 2〉 for some coefficient A, then e |−l − 2〉 = A |−l〉,
f |l + 2〉 = A |l〉, and f |−l〉 = A |−l − 2〉; see Figure 3. More explicitly, we can calculate that

e |l〉 = 1

2

√
(N − l)(N + l + 2) |l + 2〉 l 6= N ;

f |l〉 = 1

2

√
(N + l)(N − l + 2) |l − 2〉 l 6= −N. (6.1)
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0 |−N〉 |−N + 2〉 |−N + 4〉 · · · · · · |N − 4〉 |N − 2〉 |N〉 0

AN AN−2 AN−4 AN−4 AN−2 AN

AN AN−2 AN−4 AN−4 AN−2 AN

Figure 3. The string representation of sl2C on C[x, y]N . The action of e is shown
in blue and f in red.

· · ·· · · 0

Figure 4. A distance 2 code construction. The filled shapes indicate a basis for
the intermediate space B; each combination of filled shape and color indicates the
support of an orthogonal basis for this code.

6.1.1. d = 2. We wish to detect errors in E = V1. Using the two-step construction, the intermediate
subspace B can be chosen to be spanned by eigenstates that are a graph distance 2 apart in Figure
3, so dimB = dimH

2 +O(1). The remaining error space F = PBEPB is spanned by I and h, so using
the strategy in section 4.1, we can achieve dim C = dimB

2 +O(1) = dimH
4 +O(1).

The two-step strategy is not optimal in this case. Instead of finding an intermediate subspace
B where the remaining error space F = PBEPB is diagonal, the following strategy seeks to find B
such that F is block diagonal — in this case in two by two blocks. This construction was found by
Rui Okada at UC Davis.

The idea is to use the symmetry of coefficients indicated in Figure 3. Let

|ψ1〉 =
√
N − 2 |−N〉+

√
N |N − 2〉 |ϕ1〉 =

√
N |−N + 2〉 −

√
N − 2 |N〉 .

Note that e takes the support of |ψ1〉 to the support of |ϕ1〉, and we easily calculate that 〈ϕ1|e|ψ1〉 =
AN

√
N(N − 2)−AN

√
N(N − 2) = 0. Dually, f takes the support of |ϕ1〉 to the support of |ψ1〉, and

taking the adjoint of 〈ϕ1|e|ψ1〉 we get 〈ψ1|f |ϕ1〉 = 0. Further, we see that 〈ψ1|h|ψ1〉 = 〈ϕ1|h|ϕ1〉 =
0.

Going on with the code construction, we do not use |−N + 4〉 or |N − 4〉 to construct the code,
and we imitate the construction of |ψ1〉 and |ϕ1〉 by taking

|ψ2〉 =
√
N − 8 |−N + 6〉+

√
N − 6 |N − 8〉 |ϕ2〉 =

√
N − 6 |−N + 8〉 −

√
N − 8 |N − 6〉 ,

so that we still have 〈ϕ2|e|ψ2〉 = 〈ψ2|f |ϕ2〉 = 〈ψ2|h|ψ2〉 = 〈ϕ2|h|ϕ2〉 = 0. This strategy is
schematically depicted in Figure 4. Let C be the subspace spanned by the orthogonal basis elements
{|ψi〉 , |ϕi〉}. Then the error detection criterion 3.8 is satisfied with slope 0 for e, h, f , hence for E .
It is clear from Figure 4 that this construction yields a code C of dimension dim C = dimH

3 + O(1),
beating the usual two-step strategy.

Using Proposition 4.2 and taking E = h, we see that an upper bound for code dimension is dimH
2 .

It is not clear if it is possible to close the gap between the lower bound dimH
3 and the upper bound

dimH
2 . The upper bound obtained by Okada using more sophisticated linear programming methods

is also dimH
2 . Here we show that if a code can do better than Okada’s construction described above,

it must have a somewhat complicated description in terms of the eigenbasis for h.

Proposition 6.2. The construction above yielding dim C = dimH
3 is asymptotically optimal among

distance 2 codes C equipped with an orthonormal basis where the basis elements have disjoint support
on the eigenbasis for h.

Proof. First, we show that it is not possible for the support of three basis elements of C to have the
pattern shown in Figure 5. Assuming the contrary, we can adjust the phases and write the three



CLASSICAL CONSTRUCTION OF QUANTUM CODES 17

basis elements as
|ψ−〉 = a− |k − 2〉+ eiθ−b− |l − 2〉 |ψ0〉 = a0 |k〉+ eiθ0b0 |l〉 |ψ+〉 = a+ |k + 2〉+ eiθ+b+ |l + 2〉

for some relative phases θj and aj , bj ∈ R>0 satisfying the normalization conditions a2j + b2j = 1 for
j = −, 0,+. Then, the slope of h with respect to |ψj〉 is

〈ψ0|h|ψ0〉 = a20k + (1− a20)l 〈ψ±|h|ψ±〉 = a2±(k ± 2) + (1− a2±)(l ± 2). (6.3)

For this to equal a prescribed slope εh of h, εh must lie in (k + 2, l − 2), and aj and bj are already
determined if C detects h. On the other hand, to satisfy the detection condition for e, we must have

〈ψ0|e|ψ−〉 = A−a−a0 + ei(θ−+θ0)B−b−b0 ≡ 0

〈ψ+|e|ψ0〉 = A+a+a0 + ei(θ++θ0)B+b+b0 ≡ 0

for some positive coefficients A±, B±. Thus we see that ei(θ−+θ0) = ei(θ++θ0) = −1, and we need
A−B+a−b+ = A+B−a+b−. (6.4)

However, from the explicit form of the coefficients 6.1 we observe that as a function of l, the
coefficient of the action of e is a concave down function symmetric with respect to l = −1. This
means that the coefficient of e i.e. 1

2

√
(N − l)(N + l + 2) in 6.1 achieves maximum at l = −1 (N

odd) or l = −2 and l = 0 (N even); the coefficient monotonically decreases as l increases to more
than 0 or decreases to less than −2. Therefore, if l ≥ 2 and k ≤ −2 in the context of this proof,
we must have A− < A+ and B− > B+, so that A−B+ < A+B−. In the other case, if l ≤ −1 and
k ≤ −7, since the second derivative of the coefficient of e is negative, we can again deduce that
A−B+ < A+B−. The inequality still holds if k ≥ 1 and l ≥ 7, by symmetry.

Moreover, since the slopes in 6.3 all equal to εh, we see that a− < a+ hence b+ < b−, so that
a−b+ < a+b−. Therefore, we get A−B+a−b+ < A+B−a+b−, contradicting 6.4. This finishes the
first part of the proof, that is, the pattern in Figure 5 is impossible.

Now, note that with the disjoint support hypothesis, it suffices to argue locally that the code
density cannot exceed 1/3. To this end, consider an element |ψ〉 of the given orthonormal basis
for C. To detect h, |ψ〉 must be supported on at least two eigenvectors of h, at least one below εh
and at least one above. If the support of other basis elements is disjoint from the graph distance 1
neighbors of the support of |ψ〉, then at best we get a local code density of 1/4.

Otherwise, we have another basis element |ϕ〉 whose support has distance 1 to the support of
|ψ〉. Without loss of generality, assume that supp |ψ〉 has larger or equal cardinality compared to
supp |ϕ〉.

First, consider |ψ〉 to be supported on two eigenvectors of h, say |k〉 , |l〉 where k < l. Since we
are concerned with asymptotic behavior, let k+2 < l. Assume without loss of generality that |k + 2〉
is in supp |ϕ〉; then to satisfy 〈ϕ|e|ψ〉 = 0, we see that |l + 2〉 must also be in supp |ϕ〉. Now, since the
pattern in Figure 5 is not possible, we see that other basis elements of C must have graph distance
at least 1 from supp |ψ〉 ∪ supp |ϕ〉. Thus the local density is 1/3, leveling the known construction.

Second, suppose |ψ〉 is supported on three eigenvectors of h, say two above εh and one below.
If those two above are consecutive, then the slope εe of e must be nonzero. For this to be possible,
all but at most one of the given basis for C must have support of size at least three. That is, the
code density is asymptotically at most 1/3. Suppose those two above are not consecutive. Say
the h-eigenvectors in the support are |k〉 , |l1〉 , |l2〉. Again, we can assume that a neighboring basis
element |ϕ〉 is supported on at most three eigenvectors of h. If they are |k + 2〉 , |l1 + 2〉 , |l2 + 2〉,
then we get a density of at most 1/3. If they are |k + 2〉 , |l1 + 2〉, then |k + 4〉 must be orthogonal
to C by the same analysis as in the proof that Figure 5 is impossible, so the code density is again at
most 1/3.

Third and last, if |ψ〉 has support of size at least 4, then to detect e, another basis element |ϕ〉
of C must have support of size at least 2, so that the code density cannot exceed 1/3. □
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|k − 2〉 |k〉 |k + 2〉 |l − 2〉 |l〉 |l + 2〉
· · ·· · · εh · · ·· · ·

A− A+ B− B+

Figure 5. If each filled shape indicates the support of a basis element of a subspace
C, then C fails to detect all distance 1 errors.

· · ·· · · 0

Figure 6. A distance 3 code construction. Each combination of filled shape and
color indicates the support of an orthogonal basis for a second intermediate space
B′; a basis for the code is formed by pairing up the intermediate basis elements.

6.1.2. General d. Using the two-step construction, the intermediate subspace B for a distance d
code need to have graph distance d, so dimB = dimH

d + O(1). The remaining error space to be
detected is F = PBVd−1PB. By exploiting the commutation relations of e, f, h, we can deduce that
F = span{I, h, h2, . . . , hd−1}. For instance, ef and fe can be written as degree 2 polynomials in h.
In the notation of section 4.2, we have D = d − 1, so in the second step using Tverberg’s theorem,
we get a code with dimension

dim C =
dimB
d

+O(1) =
dimH
d2

+O(1).

For d ≥ 3, Okada’s idea can be generalized, but no known code can beat the two-step construc-
tion asymptotically. For instance, consider the code sketched in Figure 6. The black circles indicate
the support of a state |ψ1〉, and the black squares indicate the support of a state |ϕ1〉; similarly, the
gray filled shapes indicate the support of |ψ2〉 and |ϕ2〉, and so on we get pairs of states |ψi〉 and |ϕi〉.
If B is the intermediate space spanned by the h-eigenvectors corresponding to the filled shapes, then
the errors remaining on B are spanned by h, h2, e2, f2. By wisely choosing coefficients as we did for
the distance 2 construction, we can ensure that 〈ϕi|e2|ψi〉 = 〈ψi|f2|ϕi〉 = 〈ψi|h|ψi〉 = 〈ϕi|h|ϕi〉 = 0.
Denote the space spanned by {|ψi〉 , |ϕi〉} as B′, then dimB′ = dimH

5 + O(1). The unfortunate fact
is that we still need to detect the remaining error h2 on B, so that we need to pair up elements in
{|ψi〉 , |ϕi〉} appropriately and get a code C of dimension

dim C =
dimB′

2
+O(1) =

dimH
10

+O(1),

which is less efficient than dimH
9 +O(1) promised by the usual two-step construction.

Although the construction in Figure 6 is not optimal asymptotically, it is interesting to note
that when N = 7, it yields a code of dimension 2, whereas the usual two-step construction can only
give a code of dimension 1. In this small case, we do not need to pair up |ψ〉 and |ϕ〉 to satisfy the
detection condition for h2.

6.2. Codes in Triangular Lattice Representations of sl3C. In this subsection and the next
concerning quantum metric spaces associated to sl3C and sl4C, we drop Okada’s idea due to the
complexity of the coefficients associated to the actions of off-diagonal elements in these higher
dimensional cases. Instead, we pursue the usual two-step construction and utilize symmetries of
the weight diagrams.

Recall that the symmetric power representations for sl3C can be visualized as in Figure 2. That
is, the weight lattice for the N -th symmetric power representation

Λ = {a1L1 + a2L2 + a3L3 | L1 + L2 + L3 = 0; a1, a2, a3 ∈ Z≥0; a1 + a2 + a3 = N}
is the part of a translation of a triangular lattice called the A2 lattice that is inside the triangle
with vertices NL1, NL2, NL3, with no degeneracy. By Proposition 5.4, the first step in the two-step
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Figure 7. Weight diagram for Sym9(V ) where V is the defining representation of
sl3C. Black circles indicate a basis for a distance 2 intermediate code subspace.

construction for a distance d code in this Lie type quantum metric space is to find a graph distance d
subset of the weight diagram seen as a graph, where two vertices in the weight diagram are connected
by an edge if the action of some Li − Lj translates one corresponding weight space to the other.

Remark 6.5. More generally, the weight diagram for the representation SymN (V ) where V is the
n-dimensional defining representation of of slnC is the part of an (n− 1)-dimensional lattice inside
an (n− 1)-dimensional regular simplex with vertices {NLi}i=1,...,n, described by

ΛN
n =

{ n∑
i=1

aiLi |
n∑

i=1

Li = 0; ai ∈ Z≥0;

n∑
i=1

ai = N
}
. (6.6)

The corresponding lattice structure called An−1 is usually defined by

An−1 = {(x1, . . . , xn) ∈ Zn |
n∑

i=1

xi = 0}.

We can identify Li with the n-th standard basis vector of Zn, so that An−1 is the lattice generated
by Li − Lj , which are closest to the origin and called the roots of the lattice. The origin is inside
ΛN
n if and only if n divides N . We shall restrict attention to such cases, so that the weight diagram

is centered and ΛN
n is part of the An−1 lattice in the strict sense. No generality is lost if we only

care about codes in the limit N → ∞.

6.2.1. d = 2. Under the identification of the A2 lattice with Z[ω] where ω is a primitive third root
of unity, we may choose the intermediate subspace B to be spanned by weight vectors corresponding
to the intersection of the ideal generated by 1−ω with the triangle having vertices NL1, NL2, NL3,
as indicated in Figure 7. This choice of B is asymptotically optimal as it is associated to a tiling of
the plane by regular hexagons.

The following code construction was proposed by my REU partner Ian Shors. Note that B
corresponds to part of a sublattice of the weight lattice, with dimB = dimH

3 + O(1). Recall from
previous general discussions that the restricted error space F on B consists only of the diagonal
elements in h. In the notation of section 4.2, we may choose ε⃗ to be the origin and partition the
eigenbasis of B into disjoint subsets such that the convex hull spanned by each subset contains the
origin. In the hexagonal center of the triangle with vertices NL1, NL2, NL3, we may pair up weight
vectors in opposite weight spaces with respect to the origin. From the remaining basis elements in B
whose weights lie in the smaller triangles at the corners, we may choose one basis element in each of
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the three triangle to form a subset, so that the triangle spanned by the three corresponding weights
contain the origin. Since the hexagonal center occupies 2

3 in area of the larger triangle, we see that

dim C =
(2
3
· 1
2
+

1

3
· 1
3

)
dimB +O(1) =

4

27
dimH+O(1).

Since we used the symmetry of the weight lattice inside the hexagonal region, this is a super-Tverberg
behavior. Tverberg’s theorem guarantees only a code of dimension dimB

3 in the second step of the
construction.

6.2.2. General d. As observed in [8], a general distance d sublattice of the A2 lattice may be chosen
to be the ideal generated by bd

2c − bd+1
2 cω, so that one needs to travel bd

2c + bd+1
2 c = d edges in

the weight diagram seen as a graph to get from the origin to the nearest point in the sublattice.
The resulting choice of the intermediate code B is again asymptotically optimal and corresponds to
a tiling of the plane. When d = 2t, the sublattice corresponds to a tiling by regular hexagons of
radius t touching along edges in the lattice seen as a nearest neighbor graph. The number of vertices
in the A2 lattice on the boundary of a hexagon of radius t is 6t; each vertex that is a vertex of the
hexagon is shared by two other hexagons, and the remaining vertices on the boundary are shared by
one other hexagon in the tiling. Thus, the volume of i.e. the number of vertices in each hexagon is

1 +
( t−1∑
k=1

6k
)
+ 6 · 1

3
+ 6(t− 1) · 1

2
= 3t2.

In the case that d = 2t+1, the sublattice corresponds to a tiling by hexagonal polyhex, as illustrated
in Figure 5b of [8]. Each such polyhex contains in its interior a hexagon of radius t, so the number
of vertices in each hexagonal polyhex is

1 +

t∑
k=1

6k = 3t2 + 3t+ 1.

Accounting for boundary effects along the triangle bounding the weight diagram of SymN (V ) in the
A2 lattice, we get dimB = dimH

3t2 +O(N) or dimH
3t2+3t+1 +O(N) respectively in these two cases, where

dim(H) = Θ(N2).
Now, since the error space we wish to detect is Vd−1 = span (sl3C ⊕ CI)d−1, when d > 2 it

is not clear if the symmetry of the weight diagram can be exploited to construct more efficient
codes. Instead, we rely on Tverberg’s theorem and count the dimension of the error space F =
PBVd−1PB. Note that F is spanned by monomials in 1ij and hij for i 6= j of degree ≤ d − 1, such
that the composed translations by Li − Lj in the weight diagram corresponding to the 1ij ’s is the
identity. Returning to the concrete description of the symmetric power representations in terms of
homogeneous polynomials, recall that the action of sl3C on C[x1, x2, x3]N is defined by

dρ(1ij) = xi∂j (i 6= j) dρ(111 − 122) = h12 = x1∂1 − x2∂2 dρ(111 − 133) = h13 = x1∂1 − x3∂3.

Viewing k1 and k2 as variables with k3 = N − k1 − k2, we see that the action of each 1ij or hij
on xk1

1 x
k2
2 x

k3
3 is linear in k1 and k2. Consequently, each monomial in 1ij and hij of degree ≤ d− 1

satisfying the aforementioned condition acts diagonally such that the diagonal entry for xk1
1 x

k2
2 x

k3
3

is a polynomial in k1 and k2 of degree ≤ d− 1.
On the other hand, observe that the eigenvalues of the action of h12 and h13 on xk1

1 x
k2
2 x

k3
3 are

respectively k1 − k2 and k1 − k3 = 2k1 + k2 −N . Therefore, polynomials in h12 and h13 of degree
≤ d−1 are the collection of diagonal matrices acting on C[x1, x2, x3]N such that the diagonal entry for
xk1
1 x

k2
2 x

k3
3 is a polynomial in k1 and k2 of degree ≤ d−1. We have shown that F ⊂ span(h⊕CI)d−1,

and that for the latter, degree ≤ d − 1 polynomials in h12 and h13 is a basis. Thus, the desired
dimension upper bound for F is

(
2+d−1

2

)
= d2+d

2 . The same argument shows that more generally,
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Figure 8. Neighbors of a point in the A3 lattice

Proposition 6.7. In a symmetric power representation for slnC, let Vd−1 = span(slnC ⊕ CI)d−1,
B be a subspace spanned by weight vectors associated to a minimum distance ≥ d subset of the
weight diagram, and F = PBVd−1PB. Then F is contained in the space spanned by polynomials in
h12, h13, . . . , h1n of degree ≤ d− 1, hence dimF ≤

(
n+d−2
n−1

)
.

For sl3C, with dimF ≤ d2+d
2 , the resulting lower bound for code dimension is d 2 dimB

d2+d+2e.

6.3. Codes in Tetrahedral Lattice Representations of sl4C. The N -th symmetric power rep-
resentations of sl4C are understood using 6.6 with N = 4. To visualize, L1, . . . , L4 can be represented
as vertices of a regular tetrahedron that coincides with four of the vertices of a cube centered at the
origin. Explicitly, set

L1 = (1, 1, 1) L2 = (1,−1,−1) L3 = (−1, 1,−1) L4 = (−1,−1, 1). (6.8)

As before, ΛN
n is part of the A3 lattice generated by Li − Lj inside the tetrahedron with vertices

NL1, NL2, NL3, NL4.
In this subsection, we only look at distance 2 codes. A general construction for a distance 2

subset of ΛN
n can be described as the kernel of the map ΛN

n → Z/n given by

a1L1 + · · ·+ anLn 7→ a1 + 2a2 + · · ·+ nan, (6.9)

where the last term nan in the sum can of course be omitted. If some a1L1 + · · · + anLn is in the
kernel, then the translation of this point by Li−Lj for any i 6= j is not in the kernel, so the distance
between any two points in the kernel is at least 2. When n = 3 and 3 divides N , this construction
coincides with the construction discussed in the previous subsection, where the distance 2 subset is
part of the sublattice generated by 3L1 and 3L2. As discussed above and illustrated in Figure 7,
this distance 2 subset is optimal.

When n = 4, the distance 2 subset chosen above, denoting now as ΛN
B , is again optimal. Suppose

p = a1L1 + · · · + a4L4 in ΛN
4 is not in the kernel of 6.9. If a1 + 2a2 + 3a3 ≡ 1 mod 4, then p has

exactly four neighbors in the kernel after translation by L4 − L1, L1 − L2, L2 − L3, L3 − L4; when
a1 + 2a2 + 3a3 ≡ 3, the neighbors are obtained by the inverse of the above translations; when
a1 +2a2 +3a3 ≡ 2, we have four neighbors after translations by L4 −L2, L2 −L4, L3 −L1, L1 −L3.

On the other hand, the neighbors of a point p in the A3 lattice are given as midpoints of the
twelve edges of a cube centered at p, as shown in Figure 8. It is straightforward to observe that we
can choose at most 4 points out of these twelve points such that the nearest neighbor graph distance
between any two chosen points is at least 2. This shows the optimality of ΛN

B . When N = 8k for
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x-z=0

x+z=0

Figure 9. A schematic picture of the weight lattice for the N -th symmetric power
representation of sl4C. The planes indicated are exploited to form triangles con-
taining the origin.

some integer k, the origin is contained in ΛN
4 and ΛN

B is part of a sublattice of the A3 lattice. We
restrict attention to these cases.

In the second step of the two-step construction, the most intuitive choice for ε⃗ is the center of the
tetrahedron, or the origin in our coordinates. In the convex octahedral region formed by midpoints
of the edges of the tetrahedron, we may pair up points opposite with respect to the origin. The
opposite of a point in the remaining region is no longer inside the tetrahedron, so we consider the
next best possibility; that is, to find collections of three points forming a triangle that contains the
origin.

Inspired by numerical simulations, we utilize symmetries of ΛN
B to construct a class of triangles.

Note that if p = a1L1 + a2L2 + a3L3 + a4L4 is in ΛN
B , from a1 + 2a2 + 3a3 ≡ 0 mod 4 and

a1 + a2 + a3 + a4 = N ≡ 0 mod 2, we deduce that a1 − a3 ≡ a2 − a4 ≡ 0 mod 2. In Euclidean
coordinates specified by 6.8,

p = a1L1 + a2L2 + a3L3 + a4L4 = (a1 + a2 − a3 − a4, a1 − a2 + a3 − a4, a1 − a2 − a3 + a4).

We easily calculates that the distance from p to the plane x+ z = 0 is
√
2 |a1 − a3|, so the difference

between p and its reflection with respect to x+ z = 0 is ±(a1 − a3)(L1 −L3), which is in the kernel
of the map 6.9. Therefore, ΛN

B is symmetric with respect to x+ z = 0. Similarly, the distance from
p to the plane x − z = 0 is

√
2 |a2 − a4|, so the difference between p and its reflection with respect

to x− z = 0 is ±(a2 − a4)(L2 −L4), which is again in the kernel of 6.9. Thus, ΛN
B is also symmetric

with respect to x− z = 0.
With p as above and assuming p has x− z > 0, the reflection of p across x− z = 0 is given by

p′ = p− (a2 − a4)(L2 − L4) = a1L1 + a4L2 + a3L3 + a2L4.

Then we calculate that

−(p+ p′) = −(2a1L1 + (a2 + a4)L2 + 2a3L3 + (a2 + a4)L4)

=
(3N

4
− 2a1

)
L1 +

(3N
4

− a2 − a4
)
L2 +

(3N
4

− 2a3
)
L3 +

(3N
4

− a2 − a4
)
L4.

We have written −(p + p′) in the form where the sum of coefficients of Li is N . Since −(p + p′) is
always in the A3 lattice, if it is also inside the tetrahedron with vertices NLi, it must be a member
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of ΛN
4 , and in this case the above coefficients of Li are nonnegative. With the assumption that N is

divisible by 8, we easily see that

(3N
4

− 2a1
)
+ 2

(3N
4

− a2 − a4
)
+ 3

(3N
4

− 2a3
)
≡ 0 mod 4.

Thus, if −(p+p′) is inside the tetrahedron, then it must be inside ΛN
B . Similarly, if p′′ is the reflection

of p across x+ z = 0 and −(p+ p′′) is inside the tetrahedron, then −(p+ p′′) is inside ΛN
B .

The recipe to find triangles through the origin is then to pair up p2 relatively close to NL2 and
p4 relatively close to NL4 where p2 and p4 are symmetric with respect to x − z = 0, and let the
third vertex be −(p2 + p4), as long as it is inside the tetrahedron. Similarly, we form triangles by
picking suitable p1 relatively close to NL1 and p3 relatively close to NL3 and find the third vertex
on the plane x+ z = 0.

Unfortunately, this strategy does not improve code efficiency in the limit N → ∞, as the number
of triangles is limited by the number of lattice points on the planes x+ z = 0 and x− z = 0, which
is a negligible fraction of ΛN

B when N is large. Still, it is an interesting fact that the intermediate
lattice ΛN

B possesses symmetries that make possible the construction of these triangles, and for small
N this strategy improves code size.

Example 6.10. In the case N = 8, shown in Figure 10 is the intermediate lattice Λ8
B and the

result of our two-step construction with the origin as ε⃗, with convex hull spanned by two, three,
or four points in Λ8

B. Although we cannot prove the optimality of our two-step strategy among all
possible code constructions, in this specific example the resulting code is optimal at each step in our
framework of two-step constructions.

In more detail, this framework incorporates both the general recipe we described in section
4.2 and our choice to work in the eigenbasis of the diagonal h and choose basis elements for the
intermediate subspace B to have disjoint support on this eigenbasis. We have previously shown that
our construction of ΛB is the densest graph distance ≥ 2 subset of the lattice ΛN

4 , hence the resulting
B is optimal in the first step.

Now, we examine four regions Ri in the tetrahedron T spanned by 8Li. Each Ri is defined to
be the corner of T bounded by the plane through the center perpendicular to Li. These four planes
respectively contain the four triangles in Figure 10, and in our coordinates the four regions we refer to
are the intersection of the tetrahedron with x+y+z > 0;x−y−z > 0;−x+y−z > 0;−x−y+z > 0.
Note in Figure 10 that for each i = 1, 2, 3, 4, we have associated a convex hull to every point in Ri,
and we maximized the number of convex sets spanned by points on the boundary plane of Ri. It is
not possible to partition Λ8

B into more disjoint subsets such that the convex hull spanned by each
subset contains the origin, because once we have associated a subset to every point in Ri and its
boundary, we cannot obtain more subsets – the convex hull spanned by any collection of points in
T\Ri cannot contain the origin. This kind of “centroid argument” in general requires the fact that
T = ∪iRi because each Ri potentially contains a different number of points, but in this case each
Ri contains the same number of points due to symmetries of Λ4

B. Beware that we have shown that
both the first step and the second step are optimal in our construction, but it is not clear if the
combined two steps are optimal, although intuition says that it is in this case.

The above argument fails for larger N because lattice points fill up the tetrahedral region and
it is no longer certain if we can associate a convex hull to each point in Ri. However, the exactly
same “centroid argument” applied to the two-dimensional case shows that for any N , the codes
we constructed in the previous subsection for the N -th symmetric power representations of sl3C is
optimal in the second step. Recall that the first step as indicated in Figure 7 is also optimal. Again,
it is highly likely that the combined two steps are optimal among two-step constructions, but more
sophisticated analysis is required.
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Figure 10. Distance 2 intermediate lattice for the 8-th symmetric power repre-
sentation of sl4C. The blue points form pairs opposite with respect to the origin;
yellow points form four triangles passing though the origin; green points span two
tetrahedrons containing the origin.

7. Discussion

There are a lot of remaining questions that stem from materials discussed in this paper. For a
concrete instance, it is clear from inspection that we can construct more triangles in the tetrahedral
lattice for large N , but is it possible to construct enough that matters asymptotically? Besides
optimizing the two-step construction, one wonders if Okada’s code construction for the sl2C case
can be generalized to other cases we considered. My REU group member Ian Shors has made some
progress in this direction. Since Okada’s idea relies on the inner product we choose to make the
representation in question unitary, it seems to me that more explanation for the relevance of this
choice is also needed.

Another line of investigation is to look at more quantum metric spaces. This includes symmet-
ric power representations of slnC for higher values of n, other irreducible representations of slnC,
tensor product of these representations, Lie type graph metric spaces with g chosen to be other Lie
algebras, etc. To find a focus among these many potential topics, it would be good if we can develop
more theory. For instance, what is the implication of a degenerate weight space? What is the
relation between quantum codes in a reducible representation to quantum codes in its irreducible
components?

One may also try to elevate the objects of study from elementary convex geometrical symmetries
to more algebraic symmetries. It is possible to define and study the isometry group of a Lie type
graph metric space, which is a Lie group with some relation to the Lie algebra in question. It is even
possible to use subgroups of the isometry group to define quantum codes. Unfortunately, I did not
have time to study these topics in more detail. I hope that by pursuing these questions, we can find
a more natural explanation for the introduction of Lie algebra to quantum codes and go beyond the
basis-dependent two-step strategy to a more algebraic recipe of code construction.
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