# Quantum Error Detection and Convex Geometry 

## Ruochuan Xu

UC Davis REU
Greg Kuperberg Group

## August 2022

## Overview

1 Code and Geometry

2 Quantum Error Detection

3 Detecting One Error

4 Detecting d Commuting Errors

## Classical Code and Sphere Packing

Question (Classical Code)
For the Hamming space $H=(\mathbb{Z} / 2 \mathbb{Z})^{n}$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

Question (Classical Sphere Packing)
Given a metric space ( $X, d$ ), find the maximal number of disjoint spheres of radius $t$ we can pack into $X$.

## Classical Code and Sphere Packing

Question (Classical Code)
For the Hamming space $H=(\mathbb{Z} / 2 \mathbb{Z})^{n}$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ consisting of bit strings of even weight.
- Explicitly, C = \{[0000], [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}
- If an error occurs on one bit, the contaminated bit string will no longer lie in $C$ - Recall a notion of distance for two bit strings $x$ and $y, d(x, y)=$ weight $(x-y)$
- Bit string in $C$ are spaced apart
- The minimum distance between two points in $C$ is 2 .

Question (Classical Sphere Packing)
Given a metric space ( $X, d$ ), find the maximal number of disjoint spheres of radius $t$ we can pack into $X$.

## Classical Code and Sphere Packing

## Question (Classical Code)

For the Hamming space $H=(\mathbb{Z} / 2 \mathbb{Z})^{n}$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ consisting of bit strings of even weight.
- Explicitly, $C=\{[0000]$, [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}.
- If an error occurs on one bit, the contaminated bit string will no longer lie in C - Recall a notion of distance for two bit strings $x$ and $y, d(x, y)=$ weight $(x-y)$ - Bit string in $C$ are spaced apart
- The minimum distance between two points in $C$ is 2 .

Given a metric space $(X, d)$, find the maximal number of disjoint spheres of radius $t$ we can pack into $X$.

## Classical Code and Sphere Packing

## Question (Classical Code)

For the Hamming space $H=(\mathbb{Z} / 2 \mathbb{Z})^{n}$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ consisting of bit strings of even weight.
- Explicitly, $C=\{[0000],[1111],[1100],[0011],[1010],[0101]$, [1001], [0110]\}.
- If an error occurs on one bit, the contaminated bit string will no longer lie in $C$.
- Recall a notion of distance for two bit strings $x$ and $y, d(x, y)=$ weight $(x-y)$.
- Bit string in $C$ are spaced apart.
- The minimum distance between two points in $C$ is 2 .

Given a metric space $(X, d)$, find the maximal number of disjoint spheres of radius $t$ we can pack into $X$.

## Classical Code and Sphere Packing

## Question (Classical Code)

For the Hamming space $H=(\mathbb{Z} / 2 \mathbb{Z})^{n}$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ consisting of bit strings of even weight.
- Explicitly, $C=\{[0000]$, [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}.
- If an error occurs on one bit, the contaminated bit string will no longer lie in $C$.
- Recall a notion of distance for two bit strings $x$ and $y, d(x, y)=$ weight $(x-y)$.
- Bit string in C are spaced apart.
- The minimum distance between two points in $C$ is 2 .

Given a metric space $(X, d)$, find the maximal number of disjoint spheres of radius $t$ we can pack into $X$.

## Classical Code and Sphere Packing

## Question (Classical Code)

For the Hamming space $H=(\mathbb{Z} / 2 \mathbb{Z})^{n}$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ consisting of bit strings of even weight.
- Explicitly, $C=\{[0000]$, [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}.
- If an error occurs on one bit, the contaminated bit string will no longer lie in $C$.
- Recall a notion of distance for two bit strings $x$ and $y, d(x, y)=$ weight $(x-y)$.
- Bit string in $C$ are spaced apart.
- The minimum distance between two points in $C$ is 2 .

Given a metric space $(X, d)$, find the maximal number of disjoint spheres of radius $t$ we can pack into $X$.

## Classical Code and Sphere Packing

## Question (Classical Code)

For the Hamming space $H=(\mathbb{Z} / 2 \mathbb{Z})^{n}$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ consisting of bit strings of even weight.
- Explicitly, $C=\{[0000]$, [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}.
- If an error occurs on one bit, the contaminated bit string will no longer lie in $C$.
- Recall a notion of distance for two bit strings $x$ and $y, d(x, y)=$ weight $(x-y)$.
- Bit string in $C$ are spaced apart.
- The minimum distance between two points in $C$ is 2 .

Given a metric space $(X, d)$, find the maximal number of disjoint spheres of radius $t$ we can pack into $X$.

## Classical Code and Sphere Packing

## Question (Classical Code)

For the Hamming space $H=(\mathbb{Z} / 2 \mathbb{Z})^{n}$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ consisting of bit strings of even weight.
- Explicitly, $C=\{[0000]$, [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}.
- If an error occurs on one bit, the contaminated bit string will no longer lie in $C$.
- Recall a notion of distance for two bit strings $x$ and $y, d(x, y)=$ weight $(x-y)$.
- Bit string in $C$ are spaced apart.
- The minimum distance between two points in $C$ is 2 .

Given a metric space $(X, d)$, find the maximal number of disjoint spheres of radius $t$ we can pack into $X$.

## Classical Code and Sphere Packing

## Question (Classical Code)

For the Hamming space $H=(\mathbb{Z} / 2 \mathbb{Z})^{n}$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ consisting of bit strings of even weight.
- Explicitly, C = \{[0000], [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}.
- If an error occurs on one bit, the contaminated bit string will no longer lie in $C$.
- Recall a notion of distance for two bit strings $x$ and $y, d(x, y)=$ weight $(x-y)$.
- Bit string in $C$ are spaced apart.
- The minimum distance between two points in $C$ is 2 .


## Question (Classical Sphere Packing)

Given a metric space $(X, d)$, find the maximal number of disjoint spheres of radius $t$ we can pack into $X$.

## Classical Code and Sphere Packing

Question (Classical Sphere Packing)
Given a metric space $(X, d)$, find the maximal number of disjoint spheres of diameter $D$ we can pack into $X$.


## Classical Code and Sphere Packing

## Question (Classical Sphere Packing)

Given a metric space $(X, d)$, find the maximal number of disjoint spheres of diameter $D$ we can pack into $X$.

- For a discrete space, it is intuitive and often practical to consider a graph metric
- When the metric is integer-valued, packing spheres of radius $t$ is equivalent to finding a minimum distance set with distance $2 t+1$
- For $\mathbb{Z}^{2}$ equipped with the "texicab" metric, this is a packing of spheres of radius 1 , or equivalently, a minimum distance set of distance 3 .



## Classical Code and Sphere Packing

## Question (Classical Sphere Packing)

Given a metric space $(X, d)$, find the maximal number of disjoint spheres of diameter $D$ we can pack into $X$.

- For a discrete space, it is intuitive and often practical to consider a graph metric
- When the metric is integer-valued, packing spheres of radius $t$ is equivalent to finding a minimum distance set with distance $2 t+1$
- For $\mathbb{Z}^{2}$ equipped with the "texicab" metric, this is a packing of spheres of radius



## Classical Code and Sphere Packing

## Question (Classical Sphere Packing)

Given a metric space $(X, d)$, find the maximal number of disjoint spheres of diameter $D$ we can pack into $X$.

- For a discrete space, it is intuitive and often practical to consider a graph metric
- When the metric is integer-valued, packing spheres of radius $t$ is equivalent to finding a minimum distance set with distance $2 t+1$
- For $\mathbb{Z}^{2}$ equipped with the "texicab" metric, this is a packing of spheres of radius 1 , or equivalently, a minimum distance set of distance 3.



## Quantum Code and Geometry

Question (Quantum Code)
Given a space of errors $\mathcal{E}$ on a Hilbert space $\mathcal{H}=\mathbb{C}^{n}$, find a code $\mathcal{C} \subset \mathcal{H}$ with maximal dimension such that $\mathcal{C}$ detects $\mathcal{E}$.

Question (Convex Geometry)
Given $n$ noints in Euclidean snace $\mathbb{R}^{d}$, find a maximal partition of the $n$ points into $r$ disjoint subsets such that the convex hull spanned by each subset has a common intersection

- The convex hulls of $\vec{v}_{1}$, ., $\vec{v}_{m} \in \mathbb{R}^{d}$ consists of points of the form $\sum_{i=1}^{m} \beta^{i} \vec{v}_{i}$, where $\beta^{i} \in[0,1]$ and $\sum_{i} \beta^{i}=1$


## Quantum Code and Geometry

## Question (Quantum Code)

Given a space of errors $\mathcal{E}$ on a Hilbert space $\mathcal{H}=\mathbb{C}^{n}$, find a code $\mathcal{C} \subset \mathcal{H}$ with maximal dimension such that $\mathcal{C}$ detects $\mathcal{E}$.

## Question (Convex Geometry)

Given $n$ points in Euclidean space $\mathbb{R}^{d}$, find a maximal partition of the $n$ points into $r$ disjoint subsets such that the convex hull spanned by each subset has a common intersection.


## Quantum Code and Geometry

## Question (Quantum Code)

Given a space of errors $\mathcal{E}$ on a Hilbert space $\mathcal{H}=\mathbb{C}^{n}$, find a code $\mathcal{C} \subset \mathcal{H}$ with maximal dimension such that $\mathcal{C}$ detects $\mathcal{E}$.

## Question (Convex Geometry)

Given $n$ points in Euclidean space $\mathbb{R}^{d}$, find a maximal partition of the $n$ points into $r$ disjoint subsets such that the convex hull spanned by each subset has a common intersection.

- The convex hulls of $\vec{v}_{1}, \ldots, \vec{v}_{m} \in \mathbb{R}^{d}$ consists of points of the form $\sum_{i=1}^{m} \beta^{i} \vec{v}_{i}$, where $\beta^{i} \in[0,1]$ and $\sum_{i} \beta^{i}=1$



## Quantum Code and Geometry

## Question (Quantum Code)

Given a space of errors $\mathcal{E}$ on a Hilbert space $\mathcal{H}=\mathbb{C}^{n}$, find a code $\mathcal{C} \subset \mathcal{H}$ with maximal dimension such that $\mathcal{C}$ detects $\mathcal{E}$.

## Question (Convex Geometry)

Given $n$ points in Euclidean space $\mathbb{R}^{d}$, find a maximal partition of the $n$ points into $r$ disjoint subsets such that the convex hull spanned by each subset has a common intersection.

- The convex hulls of $\vec{v}_{1}, \ldots, \vec{v}_{m} \in \mathbb{R}^{d}$ consists of points of the form $\sum_{i=1}^{m} \beta^{i} \vec{v}_{i}$, where $\beta^{i} \in[0,1]$ and $\sum_{i} \beta^{i}=1$



## Quantum Code and Geometry

Theorem (Quantum Code)
For a space spanned by $d$ commuting errors $\mathcal{E}=\operatorname{span}\left\{I, E_{1}, \ldots, E_{d}\right\}$, on n-dimensional Hilbert space $\mathbb{C}^{n}$, there exists a code $\mathcal{C}$ with dimension $\left\lceil\frac{n}{d+1}\right\rceil$ that detects $\mathcal{E}$.

```
Theorem (Convex Geometry, due to Tverberg)
For any set of n points in d dimensional Euclidean space \mathbb{R}}\mp@subsup{}{d}{\prime}\mathrm{ , there exists a partition of
the n points into r}=\lceil\frac{n}{d+1}\rceil\mathrm{ disjoint subsets }\mp@subsup{Y}{1}{},\ldots,\mp@subsup{Y}{r}{}\mathrm{ such that
conv}(\mp@subsup{Y}{1}{})\cap\cdots\cap\operatorname{conv}(\mp@subsup{Y}{r}{})\not=\emptyset
```


## Quantum Code and Geometry

## Theorem (Quantum Code)

For a space spanned by $d$ commuting errors $\mathcal{E}=\operatorname{span}\left\{I, E_{1}, \ldots, E_{d}\right\}$, on n-dimensional Hilbert space $\mathbb{C}^{n}$, there exists a code $\mathcal{C}$ with dimension $\left\lceil\frac{n}{d+1}\right\rceil$ that detects $\mathcal{E}$.

## Theorem (Convex Geometry, due to Tverberg)

For any set of $n$ points in d-dimensional Euclidean space $\mathbb{R}^{d}$, there exists a partition of the $n$ points into $r=\left\lceil\frac{n}{d+1}\right\rceil$ disjoint subsets $Y_{1}, \ldots, Y_{r}$ such that $\operatorname{conv}\left(Y_{1}\right) \cap \cdots \cap \operatorname{conv}\left(Y_{r}\right) \neq \emptyset$.

Quantum Error Detection Condition

Theorem
$A$ code $\mathcal{C} \subset \mathcal{H}$ can detect an error $E$ if the associated projection $P_{C}$ satisfies

$$
P_{\mathcal{C}} E P_{\mathcal{C}}=\epsilon P_{\mathcal{C}}
$$

for some $\epsilon \in \mathbb{C}$.

Quantum Error Detection Condition

Theorem
$A$ code $\mathcal{C} \subset \mathcal{H}$ can detect an error $E$ if the associated projection $P_{C}$ satisfies

$$
P_{\mathcal{C}} E P_{\mathcal{C}}=\epsilon P_{\mathcal{C}}
$$

for some $\epsilon \in \mathbb{C}$.

- Equivalently, $E|\psi\rangle=\epsilon|\psi\rangle+\left|\psi^{\perp}\right\rangle$ for all $|\psi\rangle \in \mathcal{C}$, where $\left|\psi^{\perp}\right\rangle \perp \mathcal{C}$.
- Error detection goes as follows
- Perform a Boolean measurement i.e. ask a YES or NO question: Is the state $E|\psi\rangle$ inside $\mathcal{C}$ ?
- If YES, then the state after measurement is $|\psi\rangle$, and we recovered it uncontaminated.
- If NO then we detect an error, and the state after measurement lies in $\mathrm{C}^{\perp}$.

Quantum Error Detection Condition

Theorem
$A$ code $\mathcal{C} \subset \mathcal{H}$ can detect an error $E$ if the associated projection $P_{C}$ satisfies

$$
P_{\mathcal{C}} E P_{\mathcal{C}}=\epsilon P_{\mathcal{C}}
$$

for some $\epsilon \in \mathbb{C}$.

- Equivalently, $E|\psi\rangle=\epsilon|\psi\rangle+\left|\psi^{\perp}\right\rangle$ for all $|\psi\rangle \in \mathcal{C}$, where $\left|\psi^{\perp}\right\rangle \perp \mathcal{C}$.
- Error detection goes as follows
- Perform a Boolean measurement i.e. ask a YES or NO question: Is the state $E|\psi\rangle$ inside $\mathcal{C}$ ?
- If YES, then the state after measurement is $|\psi\rangle$, and we recovered it uncontaminated.
- If NO, then we detect an error, and the state after measurement lies in $\mathcal{C}^{\perp}$.

Quantum Error Detection Condition

## Theorem

$A$ code $\mathcal{C} \subset \mathcal{H}$ can detect an error $E$ if the associated projection $P_{C}$ satisfies

$$
P_{\mathcal{C}} E P_{\mathcal{C}}=\epsilon P_{\mathcal{C}}
$$

for some $\epsilon \in \mathbb{C}$.

- Equivalently, $E|\psi\rangle=\epsilon|\psi\rangle+\left|\psi^{\perp}\right\rangle$ for all $|\psi\rangle \in \mathcal{C}$, where $\left|\psi^{\perp}\right\rangle \perp \mathcal{C}$.
- Error detection goes as follows
- Perform a Boolean measurement i.e. ask a YES or NO question: Is the state $E|\psi\rangle$ inside $\mathcal{C}$ ?
- If YES, then the state after measurement is $|\psi\rangle$, and we recovered it uncontaminated
= If NO, then we detect an error, and the state after measurement lies in $\mathrm{C}-\perp$.


## Quantum Error Detection Condition

## Theorem

$A$ code $\mathcal{C} \subset \mathcal{H}$ can detect an error $E$ if the associated projection $P_{C}$ satisfies

$$
P_{\mathcal{C}} E P_{\mathcal{C}}=\epsilon P_{\mathcal{C}}
$$

for some $\epsilon \in \mathbb{C}$.

- Equivalently, $E|\psi\rangle=\epsilon|\psi\rangle+\left|\psi^{\perp}\right\rangle$ for all $|\psi\rangle \in \mathcal{C}$, where $\left|\psi^{\perp}\right\rangle \perp \mathcal{C}$.
- Error detection goes as follows
- Perform a Boolean measurement i.e. ask a YES or NO question: Is the state $E|\psi\rangle$ inside $\mathcal{C}$ ?
- If YES, then the state after measurement is $|\psi\rangle$, and we recovered it uncontaminated.
- If NO, then we detect an error, and the state after measurement lies in $\mathcal{C}^{\perp}$.


## Quantum Error Detection Condition

## Theorem

$A$ code $\mathcal{C} \subset \mathcal{H}$ can detect an error $E$ if the associated projection $P_{C}$ satisfies

$$
P_{\mathcal{C}} E P_{\mathcal{C}}=\epsilon P_{\mathcal{C}}
$$

for some $\epsilon \in \mathbb{C}$.

- Equivalently, $E|\psi\rangle=\epsilon|\psi\rangle+\left|\psi^{\perp}\right\rangle$ for all $|\psi\rangle \in \mathcal{C}$, where $\left|\psi^{\perp}\right\rangle \perp \mathcal{C}$.
- Error detection goes as follows
- Perform a Boolean measurement i.e. ask a YES or NO question: Is the state $E|\psi\rangle$ inside $\mathcal{C}$ ?
- If YES, then the state after measurement is $|\psi\rangle$, and we recovered it uncontaminated.
- If NO, then we detect an error, and the state after measurement lies in $\mathcal{C}^{\perp}$.


## Discretization of Error

Proposition (Suffices to consider a discrete set of errors)
If $\mathcal{C} \subset \mathcal{H}$ can detect both $E$ and $F$, then it can also detect any linear combination of them.

```
Proposition (Suffices to consider a discrete set of vector state in C)
The error detection condition can be eqimvalently formulated using a set of
orthonormal basis {|\psi i}\rangle}\mathrm{ for C.
```


## Discretization of Error

Proposition (Suffices to consider a discrete set of errors)
If $\mathcal{C} \subset \mathcal{H}$ can detect both $E$ and $F$, then it can also detect any linear combination of them.

- $P_{\mathcal{C}} E P_{\mathcal{C}}=\epsilon(E) P_{\mathcal{C}}$ and $P_{\mathcal{C}} F P_{\mathcal{C}}=\epsilon(F) P_{\mathcal{C}}$
- $\Longrightarrow P_{\mathcal{C}}(\alpha E+\beta F) P_{\mathcal{C}}=(\alpha \epsilon(E)+\beta \in(F)) P_{\mathcal{C}}$
$\square$
The error detection condition can be eqiuvalently formulated using a set of orthonormal basis $\left\{\left|\psi_{i}\right\rangle\right\}$ for $\mathcal{C}$ :


## Discretization of Error

Proposition (Suffices to consider a discrete set of errors)
If $\mathcal{C} \subset \mathcal{H}$ can detect both $E$ and $F$, then it can also detect any linear combination of them.

- $P_{\mathcal{C}} E P_{\mathcal{C}}=\epsilon(E) P_{\mathcal{C}}$ and $P_{\mathcal{C}} F P_{\mathcal{C}}=\epsilon(F) P_{\mathcal{C}}$

■ $\Longrightarrow P_{\mathcal{C}}(\alpha E+\beta F) P_{\mathcal{C}}=(\alpha \epsilon(E)+\beta \epsilon(F)) P_{\mathcal{C}}$

The error detection condition can be eqiuvalently formulated using a set of orthonormal basis $\left\{\left|\psi_{i}\right\rangle\right\}$ for $\mathcal{C}$ :

## Discretization of Error

Proposition (Suffices to consider a discrete set of errors)
If $\mathcal{C} \subset \mathcal{H}$ can detect both $E$ and $F$, then it can also detect any linear combination of them.

- $P_{\mathcal{C}} E P_{\mathcal{C}}=\epsilon(E) P_{\mathcal{C}}$ and $P_{\mathcal{C}} F P_{\mathcal{C}}=\epsilon(F) P_{\mathcal{C}}$

■ $\Longrightarrow P_{\mathcal{C}}(\alpha E+\beta F) P_{\mathcal{C}}=(\alpha \epsilon(E)+\beta \epsilon(F)) P_{\mathcal{C}}$

The error detection condition can be eqiuvalently formulated using a set of orthonormal basis $\left\{\left|\psi_{i}\right\rangle\right\}$ for $\mathcal{C}$ :

## Discretization of Error

## Proposition (Suffices to consider a discrete set of errors)

If $\mathcal{C} \subset \mathcal{H}$ can detect both $E$ and $F$, then it can also detect any linear combination of them.

- $P_{\mathcal{C}} E P_{\mathcal{C}}=\epsilon(E) P_{\mathcal{C}}$ and $P_{\mathcal{C}} F P_{\mathcal{C}}=\epsilon(F) P_{\mathcal{C}}$
- $\Longrightarrow P_{\mathcal{C}}(\alpha E+\beta F) P_{\mathcal{C}}=(\alpha \epsilon(E)+\beta \epsilon(F)) P_{\mathcal{C}}$


## Proposition (Suffices to consider a discrete set of vector state in $\mathcal{C}$ )

The error detection condition can be eqiuvalently formulated using a set of orthonormal basis $\left\{\left|\psi_{i}\right\rangle\right\}$ for $\mathcal{C}$ :

$$
\text { 1. }\left\langle\psi_{i}\right| E\left|\psi_{j}\right\rangle=0 \quad i \neq j \quad \text { 2. }\left\langle\psi_{i}\right| E\left|\psi_{i}\right\rangle=\epsilon(E) \quad \forall i
$$

## Discretization of Error

## Proposition (Suffices to consider a discrete set of errors)

If $\mathcal{C} \subset \mathcal{H}$ can detect both $E$ and $F$, then it can also detect any linear combination of them.

- $P_{\mathcal{C}} E P_{\mathcal{C}}=\epsilon(E) P_{\mathcal{C}}$ and $P_{\mathcal{C}} F P_{\mathcal{C}}=\epsilon(F) P_{\mathcal{C}}$
- $\Longrightarrow P_{\mathcal{C}}(\alpha E+\beta F) P_{\mathcal{C}}=(\alpha \epsilon(E)+\beta \epsilon(F)) P_{\mathcal{C}}$


## Proposition (Suffices to consider a discrete set of vector state in $\mathcal{C}$ )

The error detection condition can be eqiuvalently formulated using a set of orthonormal basis $\left\{\left|\psi_{i}\right\rangle\right\}$ for $\mathcal{C}$ :

$$
\text { 1. }\left\langle\psi_{i}\right| E\left|\psi_{j}\right\rangle=0 \quad i \neq j \quad \text { 2. }\left\langle\psi_{i}\right| E\left|\psi_{i}\right\rangle=\epsilon(E) \quad \forall i
$$

- Recall the condition $E|\psi\rangle=\epsilon|\psi\rangle+\left|\psi^{\perp}\right\rangle$ for all $|\psi\rangle \in \mathcal{C}$.

■ Call $\left\langle\psi_{i} E \mid \psi_{i}\right\rangle$ the slope of $\mathbf{E}$

## Discretization of Error

## Proposition (Suffices to consider a discrete set of errors)

If $\mathcal{C} \subset \mathcal{H}$ can detect both $E$ and $F$, then it can also detect any linear combination of them.

- $P_{\mathcal{C}} E P_{\mathcal{C}}=\epsilon(E) P_{\mathcal{C}}$ and $P_{\mathcal{C}} F P_{\mathcal{C}}=\epsilon(F) P_{\mathcal{C}}$
- $\Longrightarrow P_{\mathcal{C}}(\alpha E+\beta F) P_{\mathcal{C}}=(\alpha \epsilon(E)+\beta \epsilon(F)) P_{\mathcal{C}}$


## Proposition (Suffices to consider a discrete set of vector state in $\mathcal{C}$ )

The error detection condition can be eqiuvalently formulated using a set of orthonormal basis $\left\{\left|\psi_{i}\right\rangle\right\}$ for $\mathcal{C}$ :

$$
\text { 1. }\left\langle\psi_{i}\right| E\left|\psi_{j}\right\rangle=0 \quad i \neq j \quad \text { 2. }\left\langle\psi_{i}\right| E\left|\psi_{i}\right\rangle=\epsilon(E) \quad \forall i
$$

- Recall the condition $E|\psi\rangle=\epsilon|\psi\rangle+\left|\psi^{\perp}\right\rangle$ for all $|\psi\rangle \in \mathcal{C}$.
- Call $\left\langle\psi_{i}\right| E\left|\psi_{i}\right\rangle$ the slope of E w.r.t $\left|\psi_{i}\right\rangle$.


## Detecting One Error

- Consider $\mathcal{H}=\mathbb{C}^{2 n+1}, E \in M_{n}(\mathbb{C}), E=E^{*}$
- Label the real eigenvalues of $E$ in increasing order as

- Denote the eigenstate with eigenvalue $\lambda_{k}$ as $|k\rangle$. Consider forming a state as a linear combination of eigenstates.
- If we choose basis elements $\left\{\left|\psi_{k \mid}\right|\right\}$ for $\mathcal{C}$ each as a linear combination of $|k\rangle$ and $|\rangle$ for distinct pairs $\{k, /\}$, then we satisfy the 1st condition for error detection

$$
\begin{aligned}
\left\langle\psi_{k^{\prime}}\right| E\left|\psi_{k \prime}\right\rangle & =\left(\alpha^{\prime}\left\langle k^{\prime}\right|+\beta^{\prime}\left\langle l^{\prime}\right|\right) E(\alpha|k\rangle+\beta \mid \eta) \\
& =\left(\alpha^{\prime}\left\langle k^{\prime}\right|+\beta^{\prime}\left\langle l^{\prime}\right|\right)\left(\alpha \lambda_{k}|k\rangle+\beta \lambda_{l} \mid \eta\right)=0 \quad\left\{k^{\prime}, l^{\prime}\right\} \neq\{k, I\}
\end{aligned}
$$

- Need to satisfy the 2nd condition

$$
\left\langle v_{k_{1}}\right| E\left|v_{\nu_{k \prime}}\right\rangle=\epsilon \quad \forall\left\{k_{,} /\right\} \quad \text { for some } \epsilon
$$

- For $k<I$, let $\left|\psi_{k \mid}\right\rangle=\alpha|k\rangle+\beta \mid \lambda$, Then

$$
\begin{aligned}
\left\langle\psi_{k l}\right| E\left|\psi_{k l}\right\rangle & =\left(\alpha^{*}\langle k|+\beta^{*}\langle I|\right) E(\alpha|k\rangle+\beta \mid \lambda) \\
& =|\alpha|^{2} \lambda_{k}+|\beta|^{2} \lambda_{l} \\
& =|\alpha|^{2} \lambda_{k}+\left(1-|\alpha|^{2}\right) \lambda_{l} \in\left[\lambda_{k}, \lambda_{l}\right]
\end{aligned}
$$

## Detecting One Error

- Consider $\mathcal{H}=\mathbb{C}^{2 n+1}, E \in M_{n}(\mathbb{C}), E=E^{*}$
- Label the real eigenvalues of $E$ in increasing order as

$$
\lambda_{-n} \leq \lambda_{-n+1} \leq \cdots \leq \lambda_{0} \leq \ldots \leq \lambda_{n-1} \leq \lambda_{n}
$$

- Denote the eigenstate with eigenvalue $\lambda_{k}$ as $|k\rangle$. Consider forming a state as a linear combination of eigenstates.
- If we choose basis elements $\left\{\left|\psi_{k \mid}\right\rangle\right\}$ for $C$ each as a linear combination of $|k\rangle$ and
|l) for distinct pairs $\{k, /\}$, then we satisfy the 1st condition for error detection

$$
\begin{aligned}
\left.\left\langle\psi_{k^{\prime}}\right||E| \psi_{k l}\right\rangle & =\left(\alpha^{\prime}\left\langle k^{\prime}\right|+\beta^{\prime}\left\langle l^{\prime}\right|\right) E(\alpha|k\rangle+\beta \mid \eta) \\
& =\left(\alpha^{\prime}\left\langle k^{\prime}\right|+\beta^{\prime}\left\langle l^{\prime}\right|\right)\left(\alpha \lambda_{k}|k\rangle+\beta \lambda_{l} \mid \eta\right)=0 \quad\left\{k^{\prime}, l^{\prime}\right\} \neq\{k, l\}
\end{aligned}
$$

- Need to satisfy the 2nd condition

$$
\langle |\left|y_{, 1}\right| F\left|w_{, 1,1}\right\rangle=\epsilon \quad \forall\left\{k_{,} /\right\} \quad \text { for some } \epsilon
$$

- For $k<I$, let $\left|\psi_{k \mid}\right\rangle=\alpha|k\rangle+\beta \mid \lambda$, Then

$$
\begin{aligned}
\left\langle\psi_{k}\right| E\left|\psi_{k \mid}\right\rangle & =\left(\alpha^{*}\langle k|+\beta^{*}\langle I|\right) E(\alpha|k\rangle+\beta \mid \lambda) \\
& =|\alpha|^{2} \lambda_{k}+|\beta|^{2} \lambda_{l} \\
& =|\alpha|^{2} \lambda_{k}+\left(1-|\alpha|^{2}\right) \lambda_{l} \in\left[\lambda_{k}, \lambda_{l}\right]
\end{aligned}
$$

## Detecting One Error

- Consider $\mathcal{H}=\mathbb{C}^{2 n+1}, E \in M_{n}(\mathbb{C}), E=E^{*}$
- Label the real eigenvalues of $E$ in increasing order as

$$
\lambda_{-n} \leq \lambda_{-n+1} \leq \cdots \leq \lambda_{0} \leq \ldots \leq \lambda_{n-1} \leq \lambda_{n}
$$

- Denote the eigenstate with eigenvalue $\lambda_{k}$ as $|k\rangle$. Consider forming a state as a linear combination of eigenstates.
- If we choose basis elements $\left\{\left|\psi_{k \mid}\right\rangle\right\}$ for $\mathcal{C}$ each as a linear combination of $|k\rangle$ and $\mid \$ for distinct pairs $\{k, I\}$, then we satisfy the 1st condition for error detection
- Need to satisfy the 2nd condition
- For $k<I$, let $\left|\psi_{k \mid}\right\rangle=\alpha|k\rangle+\beta \mid \lambda$, Then



## Detecting One Error

- Consider $\mathcal{H}=\mathbb{C}^{2 n+1}, E \in M_{n}(\mathbb{C}), E=E^{*}$
- Label the real eigenvalues of $E$ in increasing order as

$$
\lambda_{-n} \leq \lambda_{-n+1} \leq \cdots \leq \lambda_{0} \leq \ldots \leq \lambda_{n-1} \leq \lambda_{n}
$$

- Denote the eigenstate with eigenvalue $\lambda_{k}$ as $|k\rangle$. Consider forming a state as a linear combination of eigenstates.
- If we choose basis elements $\left\{\left|\psi_{k \mid}\right|\right\}$ for $\mathcal{C}$ each as a linear combination of $|k\rangle$ and $|\\rangle$ for distinct pairs $\{k, I\}$, then we satisfy the 1st condition for error detection

$$
\begin{aligned}
\left\langle\psi_{k^{\prime} \prime^{\prime}}\right| E\left|\psi_{k \mid}\right\rangle & =\left(\alpha^{\prime}\left\langle k^{\prime}\right|+\beta^{\prime}\left\langle l^{\prime}\right|\right) E(\alpha|k\rangle+\beta|I\rangle) \\
& =\left(\alpha^{\prime}\left\langle k^{\prime}\right|+\beta^{\prime}\left\langle l^{\prime}\right|\right)\left(\alpha \lambda_{k}|k\rangle+\beta \lambda_{l} \mid \\
right)=0 \quad\left\{k^{\prime}, l^{\prime}\right\} \neq\{k, l\}
\end{aligned}
$$

- Need to satisfy the 2nd condition

■ For $k<I$, let $\left|\psi_{k l}\right\rangle=\alpha|k\rangle+\beta \mid \Lambda$, Then

## Detecting One Error

- Consider $\mathcal{H}=\mathbb{C}^{2 n+1}, E \in M_{n}(\mathbb{C}), E=E^{*}$
- Label the real eigenvalues of $E$ in increasing order as

$$
\lambda_{-n} \leq \lambda_{-n+1} \leq \cdots \leq \lambda_{0} \leq \ldots \leq \lambda_{n-1} \leq \lambda_{n}
$$

- Denote the eigenstate with eigenvalue $\lambda_{k}$ as $|k\rangle$. Consider forming a state as a linear combination of eigenstates.
- If we choose basis elements $\left\{\left|\psi_{k \mid}\right|\right\}$ for $\mathcal{C}$ each as a linear combination of $|k\rangle$ and $|\\rangle$ for distinct pairs $\{k, I\}$, then we satisfy the 1 st condition for error detection

$$
\begin{aligned}
\left\langle\psi_{k^{\prime} l^{\prime}}\right| E\left|\psi_{k \prime}\right\rangle & =\left(\alpha^{\prime}\left\langle k^{\prime}\right|+\beta^{\prime}\left\langle l^{\prime}\right|\right) E(\alpha|k\rangle+\beta|l\rangle) \\
& =\left(\alpha^{\prime}\left\langle k^{\prime}\right|+\beta^{\prime}\left\langle l^{\prime}\right|\right)\left(\alpha \lambda_{k}|k\rangle+\beta \lambda_{l}|\\
rangle\right)=0 \quad\left\{k^{\prime}, l^{\prime}\right\} \neq\{k, l\}
\end{aligned}
$$

- Need to satisfy the 2 nd condition

$$
\left\langle\psi_{k \mid}\right| E\left|\psi_{k \mid}\right\rangle=\epsilon \quad \forall\{k, /\} \quad \text { for some } \epsilon
$$

## Detecting One Error

- Consider $\mathcal{H}=\mathbb{C}^{2 n+1}, E \in M_{n}(\mathbb{C}), E=E^{*}$
- Label the real eigenvalues of $E$ in increasing order as

$$
\lambda_{-n} \leq \lambda_{-n+1} \leq \cdots \leq \lambda_{0} \leq \ldots \leq \lambda_{n-1} \leq \lambda_{n}
$$

- Denote the eigenstate with eigenvalue $\lambda_{k}$ as $|k\rangle$. Consider forming a state as a linear combination of eigenstates.
- If we choose basis elements $\left\{\left|\psi_{k \mid}\right|\right\}$ for $\mathcal{C}$ each as a linear combination of $|k\rangle$ and $|\\rangle$ for distinct pairs $\{k, I\}$, then we satisfy the 1 st condition for error detection

$$
\begin{aligned}
\left.\left\langle\psi_{k^{\prime}}\right||E| \psi_{k \mid}\right\rangle & =\left(\alpha^{\prime}\left\langle k^{\prime}\right|+\beta^{\prime}\left\langle l^{\prime}\right|\right) E(\alpha|k\rangle+\beta|I\rangle) \\
& =\left(\alpha^{\prime}\left\langle k^{\prime}\right|+\beta^{\prime}\left\langle l^{\prime}\right|\right)\left(\alpha \lambda_{k}|k\rangle+\beta \lambda_{l}| \rangle\right)=0 \quad\left\{k^{\prime}, l^{\prime}\right\} \neq\{k, l\}
\end{aligned}
$$

- Need to satisfy the 2 nd condition

$$
\left\langle\psi_{k \mid}\right| E\left|\psi_{k \mid}\right\rangle=\epsilon \quad \forall\{k, I\} \quad \text { for some } \epsilon
$$

■ For $k<I$, let $\left|\psi_{k \mid}\right\rangle=\alpha|k\rangle+\beta|\Lambda\rangle$, Then

$$
\begin{aligned}
\left\langle\psi_{k \mid}\right| E\left|\psi_{k l}\right\rangle & =\left(\alpha^{*}\langle k|+\beta^{*}\langle I|\right) E(\alpha|k\rangle+\beta \mid \Lambda) \\
& =|\alpha|^{2} \lambda_{k}+|\beta|^{2} \lambda_{l} \\
& =|\alpha|^{2} \lambda_{k}+\left(1-|\alpha|^{2}\right) \lambda_{I} \in\left[\lambda_{k}, \lambda_{I}\right]
\end{aligned}
$$

## Detecting One Error

- We have $\left\langle\psi_{k \mid}\right| E\left|\psi_{k \mid}\right\rangle \in\left[\lambda_{k}, \lambda_{l}\right]$
- Choose $\epsilon=\lambda_{0}$



## Detecting One Error

- We have $\left\langle\psi_{k \mid}\right| E\left|\psi_{k \mid}\right\rangle \in\left[\lambda_{k}, \lambda_{l}\right]$
- Choose $\epsilon=\lambda_{0}$



## Detecting One Error

- We have $\left\langle\psi_{k \mid}\right| E\left|\psi_{k \mid}\right\rangle \in\left[\lambda_{k}, \lambda_{l}\right]$
- Choose $\epsilon=\lambda_{0}$



## Detecting One Error

- We have $\left\langle\psi_{k \mid}\right| E\left|\psi_{k \mid}\right\rangle \in\left[\lambda_{k}, \lambda_{l}\right]$
- Choose $\epsilon=\lambda_{0}$



## Detecting One Error

- We have $\left\langle\psi_{k \mid}\right| E\left|\psi_{k \mid}\right\rangle \in\left[\lambda_{k}, \lambda_{l}\right]$
- Choose $\epsilon=\lambda_{0}$

- The coefficients $\alpha_{k}, \beta_{k}$ can be chosen appropriately such that

$$
\left\langle\psi_{k}\right| E\left|\psi_{k}\right\rangle=\lambda_{0} \quad \forall k
$$

- $\operatorname{dim} \mathcal{C}=n+1 \quad \operatorname{dim} \mathcal{H}=2 n+1$


## Detecting One Error

- We have $\left\langle\psi_{k \mid}\right| E\left|\psi_{k \mid}\right\rangle \in\left[\lambda_{k}, \lambda_{l}\right]$
- Choose $\epsilon=\lambda_{0}$

- The coefficients $\alpha_{k}, \beta_{k}$ can be chosen appropriately such that

$$
\left\langle\psi_{k}\right| E\left|\psi_{k}\right\rangle=\lambda_{0} \quad \forall k
$$

- $\operatorname{dim} \mathcal{C}=n+1 \quad \operatorname{dim} \mathcal{H}=2 n+1$


## Detecting d Commuting Errors

- Detecting one error $E$ is equivalent to detecting all errors in the error space $\mathcal{E}=\operatorname{span}\{I, E\}$
- Consider $\mathcal{E}=\operatorname{span}\left\{I, E_{1}, \ldots, E_{d}\right\}, \mathcal{H}=\mathbb{C}^{n}$, where $E_{a}^{*}=E_{a} \forall a$ and $E_{a} E_{b}=E_{b} E_{a}$
- Let $\vec{E}:=\left(E_{1}, \ldots, E_{d}\right)$. Then we can find simultaneous eigenstates $|1\rangle, \ldots,|n\rangle$ such that $\vec{E}|m\rangle=\vec{\lambda}_{m}|m\rangle$
- Consider a subset $Y \subset\{1, \ldots, n\}$. Form a state as a linear combination of eigenstates with indices in $Y$ :



## Detecting d Commuting Errors

- Detecting one error $E$ is equivalent to detecting all errors in the error space $\mathcal{E}=\operatorname{span}\{I, E\}$
- Consider $\mathcal{E}=\operatorname{span}\left\{I, E_{1}, \ldots, E_{d}\right\}, \mathcal{H}=\mathbb{C}^{n}$, where $E_{a}^{*}=E_{a} \forall a$ and $E_{a} E_{b}=E_{b} E_{a}$
- Let $\vec{E}:=\left(E_{1}, \ldots, E_{d}\right)$. Then we can find simultaneous eigenstates $|1\rangle, \ldots,|n\rangle$ such that $\vec{E}|m\rangle=\vec{\lambda}_{m}|m\rangle$
- Consider a subset $Y \subset\{1, \ldots, n\}$. Form a state as a linear combination of eigenstates with indices in $Y$ :



## Detecting d Commuting Errors

- Detecting one error $E$ is equivalent to detecting all errors in the error space $\mathcal{E}=\operatorname{span}\{I, E\}$
- Consider $\mathcal{E}=\operatorname{span}\left\{I, E_{1}, \ldots, E_{d}\right\}, \mathcal{H}=\mathbb{C}^{n}$, where $E_{a}^{*}=E_{a} \forall a$ and $E_{a} E_{b}=E_{b} E_{a}$
- Let $\vec{E}:=\left(E_{1}, \ldots, E_{d}\right)$. Then we can find simultaneous eigenstates $|1\rangle, \ldots,|n\rangle$ such that $\vec{E}|m\rangle=\vec{\lambda}_{m}|m\rangle$.
- Consider a subset $Y \subset\{1, \ldots, n\}$. Form a state as a linear combination of eigenstates with indices in $Y$ :



## Detecting d Commuting Errors

- Detecting one error $E$ is equivalent to detecting all errors in the error space $\mathcal{E}=\operatorname{span}\{I, E\}$
- Consider $\mathcal{E}=\operatorname{span}\left\{I, E_{1}, \ldots, E_{d}\right\}, \mathcal{H}=\mathbb{C}^{n}$, where $E_{a}^{*}=E_{a} \forall a$ and $E_{a} E_{b}=E_{b} E_{a}$
- Let $\vec{E}:=\left(E_{1}, \ldots, E_{d}\right)$. Then we can find simultaneous eigenstates $|1\rangle, \ldots,|n\rangle$ such that $\vec{E}|m\rangle=\vec{\lambda}_{m}|m\rangle$.
- Consider a subset $Y \subset\{1, \ldots, n\}$. Form a state as a linear combination of eigenstates with indices in $Y$ :

$$
|\psi\rangle:=\sum_{m \in Y} \sqrt{\beta^{m}}|m\rangle
$$



## Detecting d Commuting Errors

- Detecting one error $E$ is equivalent to detecting all errors in the error space $\mathcal{E}=\operatorname{span}\{I, E\}$
- Consider $\mathcal{E}=\operatorname{span}\left\{I, E_{1}, \ldots, E_{d}\right\}, \mathcal{H}=\mathbb{C}^{n}$, where $E_{a}^{*}=E_{a} \forall a$ and $E_{a} E_{b}=E_{b} E_{a}$
- Let $\vec{E}:=\left(E_{1}, \ldots, E_{d}\right)$. Then we can find simultaneous eigenstates $|1\rangle, \ldots,|n\rangle$ such that $\vec{E}|m\rangle=\vec{\lambda}_{m}|m\rangle$.
- Consider a subset $Y \subset\{1, \ldots, n\}$. Form a state as a linear combination of eigenstates with indices in $Y$ :

$$
|\psi\rangle:=\sum_{m \in Y} \sqrt{\beta^{m}}|m\rangle
$$

$$
\begin{aligned}
\langle\psi| \vec{E}|\psi\rangle & =\left(\sum_{m^{\prime} \in Y} \sqrt{\beta^{m^{\prime}}}\left\langle m^{\prime}\right|\right) \vec{E}\left(\sum_{m \in Y} \sqrt{\beta^{m}}|m\rangle\right) \\
& =\left(\sum_{m^{\prime} \in Y} \sqrt{\beta^{m^{\prime}}}\langle m|\right)\left(\sum_{m \in Y} \vec{\lambda}_{m} \sqrt{\beta^{m}}|m\rangle\right)=\sum_{m \in Y} \beta^{m} \vec{\lambda}_{m}
\end{aligned}
$$

## Detecting d Commuting Errors

- Consider a partition of $\{1, \ldots n\}$ into $r$ disjoint subsets $\left\{Y_{k}\right\}$.
- Choose basis elements of $\mathcal{C}$ each as a linear combination of eigenstates with indices in $Y_{k}$ :

$$
\left|\psi_{k}\right\rangle=\sum_{m \in Y_{k}} \sqrt{\beta_{k}^{m}}|m\rangle
$$

- Already satisfies the 1st condition for error detection: $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{1}\right\rangle=0 \quad k \neq 1$
- Need to choose $\epsilon_{1}, \ldots, \epsilon_{d}$ and coefficients $\beta_{k}^{m}$ such that $\left\langle\psi_{k}\right| E_{a}\left|\psi_{k}\right\rangle=\epsilon_{a}$ for $a=1, \ldots, d$ and for all $k$.
- Equivalently, need to find $\vec{\epsilon} \in \mathbb{R}^{d}$ and $\beta_{k}^{m}$ such that $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{k}\right\rangle=\vec{\epsilon} \quad \forall k$
- As previously calculated,

where the coefficients $\beta_{k}^{m}$ satisfy $\sum_{m \in Y_{k}} \beta_{k}^{m}=1$.


## Detecting d Commuting Errors

- Consider a partition of $\{1, \ldots n\}$ into $r$ disjoint subsets $\left\{Y_{k}\right\}$.
- Choose basis elements of $\mathcal{C}$ each as a linear combination of eigenstates with indices in $Y_{k}$ :

$$
\left|\psi_{k}\right\rangle=\sum_{m \in Y_{k}} \sqrt{\beta_{k}^{m}}|m\rangle
$$

- Already satisfies the 1st condition for error detection: $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{\|}\right\rangle=0 \quad k \neq 1$
- Need to choose $\epsilon_{1}, \ldots, \epsilon_{d}$ and coefficients $\beta_{k}^{m}$ such that $\left\langle\psi_{k}\right| E_{a}\left|\psi_{k}\right\rangle=\epsilon_{a}$ for $a=1, \ldots, d$ and for all $k$.
- Equivalently, need to find $\vec{\epsilon} \in \mathbb{R}^{d}$ and $\beta_{k}^{m}$ such that $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{k}\right\rangle=\vec{\epsilon} \quad \forall k$
- As previously calculated,

where the coefficients $\beta_{k}^{m}$ satisfy $\sum_{m \in Y_{k}} \beta_{k}^{m}=1$


## Detecting d Commuting Errors

- Consider a partition of $\{1, \ldots n\}$ into $r$ disjoint subsets $\left\{Y_{k}\right\}$.
- Choose basis elements of $\mathcal{C}$ each as a linear combination of eigenstates with indices in $Y_{k}$ :

$$
\left|\psi_{k}\right\rangle=\sum_{m \in Y_{k}} \sqrt{\beta_{k}^{m}}|m\rangle
$$

- Already satisfies the 1st condition for error detection: $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{l}\right\rangle=0 \quad k \neq 1$
- Need to choose $\epsilon_{1}, \ldots, \epsilon_{d}$ and coefficients $\beta_{k}^{m}$ such that $\left\langle\psi_{k}\right| E_{a}\left|\psi_{k}\right\rangle=\epsilon_{a}$ for $a=1, \ldots, d$ and for all $k$.
■ Equivalently, need to find $\vec{\epsilon} \in \mathbb{R}^{d}$ and $\beta_{k}^{m}$ such that $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{k}\right\rangle=\vec{\epsilon} \quad \forall k$
- As previously calculated,
where the coefficients $\beta_{k}^{m}$ satisfy $\sum_{m \in Y_{k}} \beta_{k}^{m}=1$


## Detecting d Commuting Errors

- Consider a partition of $\{1, \ldots n\}$ into $r$ disjoint subsets $\left\{Y_{k}\right\}$.
- Choose basis elements of $\mathcal{C}$ each as a linear combination of eigenstates with indices in $Y_{k}$ :

$$
\left|\psi_{k}\right\rangle=\sum_{m \in Y_{k}} \sqrt{\beta_{k}^{m}}|m\rangle
$$

- Already satisfies the 1 st condition for error detection: $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{l}\right\rangle=0 \quad k \neq 1$
- Need to choose $\epsilon_{1}, \ldots, \epsilon_{d}$ and coefficients $\beta_{k}^{m}$ such that $\left\langle\psi_{k}\right| E_{a}\left|\psi_{k}\right\rangle=\epsilon_{a}$ for $a=1, \ldots, d$ and for all $k$.
- Equivalently, need to find $\vec{\epsilon} \in \mathbb{R}^{d}$ and $\beta_{k}^{m}$ such that $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{k}\right\rangle=\vec{\epsilon} \quad \forall k$
- As previously calculated,
where the coefficients $\beta_{k}^{m}$ satisfy $\sum_{m \in Y_{k}} \beta_{k}^{m}=1$.


## Detecting d Commuting Errors

- Consider a partition of $\{1, \ldots n\}$ into $r$ disjoint subsets $\left\{Y_{k}\right\}$.
- Choose basis elements of $\mathcal{C}$ each as a linear combination of eigenstates with indices in $Y_{k}$ :

$$
\left|\psi_{k}\right\rangle=\sum_{m \in Y_{k}} \sqrt{\beta_{k}^{m}}|m\rangle
$$

- Already satisfies the 1 st condition for error detection: $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{l}\right\rangle=0 \quad k \neq 1$
- Need to choose $\epsilon_{1}, \ldots, \epsilon_{d}$ and coefficients $\beta_{k}^{m}$ such that $\left\langle\psi_{k}\right| E_{a}\left|\psi_{k}\right\rangle=\epsilon_{a}$ for $a=1, \ldots, d$ and for all $k$.
- Equivalently, need to find $\vec{\epsilon} \in \mathbb{R}^{d}$ and $\beta_{k}^{m}$ such that $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{k}\right\rangle=\vec{\epsilon} \quad \forall k$
- As previously calculated
where the coefficients $\beta_{k}^{m}$ satisfy $\sum_{m \in Y_{k}} \beta_{k}^{m}=1$


## Detecting d Commuting Errors

- Consider a partition of $\{1, \ldots n\}$ into $r$ disjoint subsets $\left\{Y_{k}\right\}$.
- Choose basis elements of $\mathcal{C}$ each as a linear combination of eigenstates with indices in $Y_{k}$ :

$$
\left|\psi_{k}\right\rangle=\sum_{m \in Y_{k}} \sqrt{\beta_{k}^{m}}|m\rangle
$$

- Already satisfies the 1 st condition for error detection: $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{l}\right\rangle=0 \quad k \neq 1$
- Need to choose $\epsilon_{1}, \ldots, \epsilon_{d}$ and coefficients $\beta_{k}^{m}$ such that $\left\langle\psi_{k}\right| E_{a}\left|\psi_{k}\right\rangle=\epsilon_{a}$ for $a=1, \ldots, d$ and for all $k$.
- Equivalently, need to find $\vec{\epsilon} \in \mathbb{R}^{d}$ and $\beta_{k}^{m}$ such that $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{k}\right\rangle=\vec{\epsilon} \quad \forall k$
- As previously calculated,

$$
\left\langle\psi_{k}\right| \vec{E}\left|\psi_{k}\right\rangle=\sum_{m \in Y_{k}} \beta_{k}^{m} \vec{\lambda}_{m},
$$

where the coefficients $\beta_{k}^{m}$ satisfy $\sum_{m \in Y_{k}} \beta_{k}^{m}=1$.

## Detecting d Commuting Errors

- $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{k}\right\rangle=\sum_{m \in Y_{k}} \beta_{k}^{m} \vec{\lambda}_{m} \in \operatorname{conv}\left(\left\{\vec{\lambda}_{i}\right\}_{i \in Y_{k}}\right)$.
- Therefore, $\vec{\epsilon}$ and $\beta_{k}^{m}$ satisfying the 2nd condition exist if and only if

$$
\Longleftrightarrow \bigcap \operatorname{conv}\left(\left\{\vec{\lambda}_{m}\right\}_{m \in Y_{k}}\right) \neq \emptyset \quad(\star)
$$

- Then $\vec{\epsilon}$ can be chosen to be any point in the interesection of the convex hulls.


## Detecting d Commuting Errors

- $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{k}\right\rangle=\sum_{m \in Y_{k}} \beta_{k}^{m} \vec{\lambda}_{m} \in \operatorname{conv}\left(\left\{\vec{\lambda}_{i}\right\}_{i \in Y_{k}}\right)$.
- Therefore, $\vec{\epsilon}$ and $\beta_{k}^{m}$ satisfying the 2 nd condition exist if and only if

$$
\Longleftrightarrow \bigcap \operatorname{conv}\left(\left\{\vec{\lambda}_{m}\right\}_{m \in Y_{k}}\right) \neq \emptyset \quad(\star)
$$

- Then $\vec{\epsilon}$ can be chosen to be any point in the interesection of the convex hulls.


## Detecting d Commuting Errors

- $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{k}\right\rangle=\sum_{m \in Y_{k}} \beta_{k}^{m} \vec{\lambda}_{m} \in \operatorname{conv}\left(\left\{\vec{\lambda}_{i}\right\}_{i \in Y_{k}}\right)$.
- Therefore, $\vec{\epsilon}$ and $\beta_{k}^{m}$ satisfying the 2 nd condition exist if and only if

$$
\Longleftrightarrow \bigcap \operatorname{conv}\left(\left\{\vec{\lambda}_{m}\right\}_{m \in Y_{k}}\right) \neq \emptyset \quad(\star)
$$

- Then $\vec{\epsilon}$ can be chosen to be any point in the interesection of the convex hulls.


## Detecting d Commuting Errors

- $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{k}\right\rangle=\sum_{m \in Y_{k}} \beta_{k}^{m} \vec{\lambda}_{m} \in \operatorname{conv}\left(\left\{\vec{\lambda}_{i}\right\}_{i \in Y_{k}}\right)$.
- Therefore, $\vec{\epsilon}$ and $\beta_{k}^{m}$ satisfying the 2 nd condition exist if and only if

$$
\Longleftrightarrow \bigcap \operatorname{conv}\left(\left\{\vec{\lambda}_{m}\right\}_{m \in Y_{k}}\right) \neq \emptyset \quad(\star)
$$

- Then $\vec{\epsilon}$ can be chosen to be any point in the interesection of the convex hulls.



## Detecting d Commuting Errors

- $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{k}\right\rangle=\sum_{m \in Y_{k}} \beta_{k}^{m} \vec{\lambda}_{m} \in \operatorname{conv}\left(\left\{\vec{\lambda}_{i}\right\}_{i \in Y_{k}}\right)$.
- Therefore, $\vec{\epsilon}$ and $\beta_{k}^{m}$ satisfying the 2 nd condition exist if and only if

$$
\Longleftrightarrow \bigcap \operatorname{conv}\left(\left\{\vec{\lambda}_{m}\right\}_{m \in Y_{k}}\right) \neq \emptyset \quad(\star)
$$

- Then $\vec{\epsilon}$ can be chosen to be any point in the interesection of the convex hulls.



## Detecting d Commuting Errors

- $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{k}\right\rangle=\sum_{m \in Y_{k}} \beta_{k}^{m} \vec{\lambda}_{m} \in \operatorname{conv}\left(\left\{\vec{\lambda}_{i}\right\}_{i \in Y_{k}}\right)$.
- Therefore, $\vec{\epsilon}$ and $\beta_{k}^{m}$ satisfying the 2 nd condition exist if and only if

$$
\begin{equation*}
\Longleftrightarrow \bigcap \operatorname{conv}\left(\left\{\vec{\lambda}_{m}\right\}_{m \in Y_{k}}\right) \neq \emptyset \tag{*}
\end{equation*}
$$

- Then $\vec{\epsilon}$ can be chosen to be any point in the interesection of the convex hulls.

- By Tverberg's theorem, there exists a partition of $\{1, \ldots, n\}$ into $r=\left\lceil\frac{n}{d+1}\right\rceil$ disjoint subsets $Y_{k}$ such that $(\star)$ holds


## Detecting d Commuting Errors

- $\left\langle\psi_{k}\right| \vec{E}\left|\psi_{k}\right\rangle=\sum_{m \in Y_{k}} \beta_{k}^{m} \vec{\lambda}_{m} \in \operatorname{conv}\left(\left\{\vec{\lambda}_{i}\right\}_{i \in Y_{k}}\right)$.
- Therefore, $\vec{\epsilon}$ and $\beta_{k}^{m}$ satisfying the 2 nd condition exist if and only if

$$
\begin{equation*}
\Longleftrightarrow \bigcap \operatorname{conv}\left(\left\{\vec{\lambda}_{m}\right\}_{m \in Y_{k}}\right) \neq \emptyset \tag{*}
\end{equation*}
$$

- Then $\vec{\epsilon}$ can be chosen to be any point in the interesection of the convex hulls.

- By Tverberg's theorem, there exists a partition of $\{1, \ldots, n\}$ into $r=\left\lceil\frac{n}{d+1}\right\rceil$
disjoint subsets $Y_{k}$ such that $(\star)$ holds
- $\operatorname{dim} \mathcal{C} \geq\left\lceil\frac{n}{d+1}\right\rceil$.


## Key Points

- maximize $\operatorname{dim} \mathcal{C} \Longrightarrow$ maximize the size of partition of points such that the convex hull spanned by each subset has a common intersection.
- The continuous problem of quantum error detection is discretized and geometrized.


## Key Points

- maximize $\operatorname{dim} \mathcal{C} \Longrightarrow$ maximize the size of partition of points such that the convex hull spanned by each subset has a common intersection.
- The continuous problem of quantum error detection is discretized and geometrized.


## Thank you

