Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

Quantum Error Detection and Convex Geometry

Ruochuan Xu

UC Davis REU Greg Kuperberg Group

August 2022

Ruochuan Xu Quantum Error Detection and Convex Geometry University of Chicago

= nar

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

Overview

1 Code and Geometry

2 Quantum Error Detection

3 Detecting One Error

4 Detecting d Commuting Errors

・ロト・日本・日本・日本・日本・日本

Ruochuan Xu Quantum Error Detection and Convex Geometry

Code and	l Geometry
0000	

Quantum Error Detection

Detecting One Error

Detecting d Commuting Errors

Classical Code and Sphere Packing

Question (Classical Code)

For the Hamming space $H = (\mathbb{Z}/2\mathbb{Z})^n$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z}/2\mathbb{Z})^4$ consisting of bit strings of even weight.
- Explicitly, C = {[0000], [1111], [1100], [0011], [1010], [0101], [1001], [0110]}.
- If an error occurs on one bit, the contaminated bit string will no longer lie in C.
- Recall a notion of distance for two bit strings x and y, d(x, y) = weight (x y).
- Bit string in C are spaced apart.
- The minimum distance between two points in C is 2.

Question (Classical Sphere Packing)

Given a metric space (X, d), find the maximal number of disjoint spheres of radius t we can pack into X.

University of Chicago

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Error
000	00	00	00000

Question (Classical Code)

For the Hamming space $H = (\mathbb{Z}/2\mathbb{Z})^n$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

• Consider the subspace of $(\mathbb{Z}/2\mathbb{Z})^4$ consisting of bit strings of even weight.

- Explicitly, $C = \{[0000], [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}.$
- If an error occurs on one bit, the contaminated bit string will no longer lie in C.
- Recall a notion of distance for two bit strings x and y, d(x, y) = weight (x y).
- Bit string in C are spaced apart.
- The minimum distance between two points in C is 2.

Question (Classical Sphere Packing)

Given a metric space (X, d), find the maximal number of disjoint spheres of radius t we can pack into X.

<ロ> (日) (日) (日) (日) (日)

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
000	00	00	00000

Question (Classical Code)

For the Hamming space $H = (\mathbb{Z}/2\mathbb{Z})^n$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z}/2\mathbb{Z})^4$ consisting of bit strings of even weight.
- Explicitly, $C = \{[0000], [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}$.
- If an error occurs on one bit, the contaminated bit string will no longer lie in C.
- Recall a notion of distance for two bit strings x and y, d(x, y) = weight (x y).
- Bit string in *C* are spaced apart.
- The minimum distance between two points in C is 2.

Question (Classical Sphere Packing)

Given a metric space (X, d), find the maximal number of disjoint spheres of radius t we can pack into X.

イロト イボト イヨト イヨト

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
000	00	00	00000

Question (Classical Code)

For the Hamming space $H = (\mathbb{Z}/2\mathbb{Z})^n$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z}/2\mathbb{Z})^4$ consisting of bit strings of even weight.
- Explicitly, $C = \{[0000], [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}$.
- If an error occurs on one bit, the contaminated bit string will no longer lie in C.
- Recall a notion of distance for two bit strings x and y, d(x, y) = weight (x y).
- Bit string in *C* are spaced apart.
- The minimum distance between two points in C is 2.

Question (Classical Sphere Packing)

Given a metric space (X, d), find the maximal number of disjoint spheres of radius t we can pack into X.

イロト イポト イヨト イヨト

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
000	00	00	00000

Question (Classical Code)

For the Hamming space $H = (\mathbb{Z}/2\mathbb{Z})^n$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z}/2\mathbb{Z})^4$ consisting of bit strings of even weight.
- Explicitly, $C = \{[0000], [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}$.
- If an error occurs on one bit, the contaminated bit string will no longer lie in C.
- Recall a notion of distance for two bit strings x and y, d(x, y) = weight (x y).
- Bit string in C are spaced apart.
- The minimum distance between two points in C is 2.

Question (Classical Sphere Packing)

Given a metric space (X, d), find the maximal number of disjoint spheres of radius t we can pack into X.

イロト イヨト イヨト

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
000	00	00	00000

Question (Classical Code)

For the Hamming space $H = (\mathbb{Z}/2\mathbb{Z})^n$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z}/2\mathbb{Z})^4$ consisting of bit strings of even weight.
- Explicitly, $C = \{[0000], [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}$.
- If an error occurs on one bit, the contaminated bit string will no longer lie in C.
- Recall a notion of distance for two bit strings x and y, d(x, y) = weight (x y).
- Bit string in C are spaced apart.
- The minimum distance between two points in C is 2.

Question (Classical Sphere Packing)

Given a metric space (X, d), find the maximal number of disjoint spheres of radius t we can pack into X.

イロト イヨト イヨト

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
000	00	00	00000

Question (Classical Code)

For the Hamming space $H = (\mathbb{Z}/2\mathbb{Z})^n$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z}/2\mathbb{Z})^4$ consisting of bit strings of even weight.
- Explicitly, $C = \{[0000], [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}$.
- If an error occurs on one bit, the contaminated bit string will no longer lie in C.
- Recall a notion of distance for two bit strings x and y, d(x, y) = weight (x y).
- Bit string in C are spaced apart.
- The minimum distance between two points in C is 2.

Question (Classical Sphere Packing)

Given a metric space (X, d), find the maximal number of disjoint spheres of radius t we can pack into X.

イロト イポト イヨト イヨト

1

University of Chicago

SOR

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
000	00	00	00000

Question (Classical Code)

For the Hamming space $H = (\mathbb{Z}/2\mathbb{Z})^n$, find a code $C \subset H$ with maximal dimension that detects errors on d bits.

- Consider the subspace of $(\mathbb{Z}/2\mathbb{Z})^4$ consisting of bit strings of even weight.
- Explicitly, $C = \{[0000], [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}$.
- If an error occurs on one bit, the contaminated bit string will no longer lie in C.
- Recall a notion of distance for two bit strings x and y, d(x, y) = weight (x y).
- Bit string in C are spaced apart.
- The minimum distance between two points in C is 2.

Question (Classical Sphere Packing)

Given a metric space (X, d), find the maximal number of disjoint spheres of radius t we can pack into X.

イロト イポト イヨト イヨト

1

University of Chicago

SOR

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
000	00	00	00000

Question (Classical Code)

For the Hamming space $H = (\mathbb{Z}/2\mathbb{Z})^n$, find a code $C \subset H$ with maximal dimension that detects errors on d bits

- Consider the subspace of $(\mathbb{Z}/2\mathbb{Z})^4$ consisting of bit strings of even weight.
- Explicitly, $C = \{[0000], [1111], [1100], [0011], [1010], [0101], [1001], [0110]\}$.
- If an error occurs on one bit, the contaminated bit string will no longer lie in C.
- Recall a notion of distance for two bit strings x and y, d(x, y) = weight (x y).
- Bit string in C are spaced apart.
- The **minimum distance** between two points in C is 2.

Question (Classical Sphere Packing)

Given a metric space (X, d), find the maximal number of disjoint spheres of radius t we can pack into X.

SOR

イロト 不得 とうほう イヨト

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

Question (Classical Sphere Packing)

Given a metric space (X, d), find the maximal number of disjoint spheres of diameter D we can pack into X.

- For a discrete space, it is intuitive and often practical to consider a graph metric
 When the metric is integer-valued, packing spheres of radius t is equivalent to finding a minimum distance set with distance 2t + 1
- For Z² equipped with the "texicab" metric, this is a packing of spheres of radius 1, or equivalently, a minimum distance set of distance 3.

Ruochuan Xu Quantum Error Detection and Convex Geometry (日)

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

Question (Classical Sphere Packing)

Given a metric space (X, d), find the maximal number of disjoint spheres of diameter D we can pack into X.

- For a discrete space, it is intuitive and often practical to consider a graph metric
- When the metric is integer-valued, packing spheres of radius t is equivalent to finding a minimum distance set with distance 2t + 1
- For Z² equipped with the "texicab" metric, this is a packing of spheres of radius 1, or equivalently, a minimum distance set of distance 3.

Ruochuan Xu Quantum Error Detection and Convex Geometry University of Chicago

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000
0000	00	00	00000

Question (Classical Sphere Packing)

Given a metric space (X, d), find the maximal number of disjoint spheres of diameter D we can pack into X.

- For a discrete space, it is intuitive and often practical to consider a graph metric
- When the metric is integer-valued, packing spheres of radius t is equivalent to finding a minimum distance set with distance 2t + 1
- For \mathbb{Z}^2 equipped with the "texicab" metric, this is a packing of spheres of radius 1, or equivalently, a minimum distance set of distance 3.

Ruochuan Xu Quantum Error Detection and Convex Geometry

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

Question (Classical Sphere Packing)

Given a metric space (X, d), find the maximal number of disjoint spheres of diameter D we can pack into X.

- For a discrete space, it is intuitive and often practical to consider a graph metric
- When the metric is integer-valued, packing spheres of radius t is equivalent to finding a minimum distance set with distance 2t + 1
- For \mathbb{Z}^2 equipped with the "texicab" metric, this is a packing of spheres of radius 1, or equivalently, a minimum distance set of distance 3.

Detecting d Commuting Errors

Quantum Code and Geometry

Question (Quantum Code)

Given a space of errors \mathcal{E} on a Hilbert space $\mathcal{H} = \mathbb{C}^n$, find a code $\mathcal{C} \subset \mathcal{H}$ with maximal dimension such that \mathcal{C} detects \mathcal{E} .

Question (Convex Geometry)

Given n points in Euclidean space \mathbb{R}^d , find a maximal partition of the n points into r disjoint subsets such that the convex hull spanned by each subset has a common intersection.

■ The convex hulls of $\vec{v}_1, \ldots, \vec{v}_m \in \mathbb{R}^d$ consists of points of the form $\sum_{i=1}^m \beta^i \vec{v}_i$, where $\beta^i \in [0, 1]$ and $\sum_i \beta^i = 1$

Code	and	Geometry
0000	С	

Question (Quantum Code)

Given a space of errors \mathcal{E} on a Hilbert space $\mathcal{H} = \mathbb{C}^n$, find a code $\mathcal{C} \subset \mathcal{H}$ with maximal dimension such that C detects \mathcal{E} .

Question (Convex Geometry)

Given n points in Euclidean space \mathbb{R}^d , find a maximal partition of the n points into r disjoint subsets such that the convex hull spanned by each subset has a common intersection.

The convex hulls of $\vec{v}_1, \ldots, \vec{v}_m \in \mathbb{R}^d$ consists of points of the form $\sum_{i=1}^m \beta^i \vec{v}_i$,

Ruochuan Xu Quantum Error Detection and Convex Geometry

1 University of Chicago

SOR

イロン イロン イヨン イヨン

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

Question (Quantum Code)

Given a space of errors \mathcal{E} on a Hilbert space $\mathcal{H} = \mathbb{C}^n$, find a code $\mathcal{C} \subset \mathcal{H}$ with maximal dimension such that \mathcal{C} detects \mathcal{E} .

Question (Convex Geometry)

Given n points in Euclidean space \mathbb{R}^d , find a maximal partition of the n points into r disjoint subsets such that the convex hull spanned by each subset has a common intersection.

• The convex hulls of $\vec{v}_1, \ldots, \vec{v}_m \in \mathbb{R}^d$ consists of points of the form $\sum_{i=1}^m \beta^i \vec{v}_i$, where $\beta^i \in [0, 1]$ and $\sum_i \beta^i = 1$

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

Question (Quantum Code)

Given a space of errors \mathcal{E} on a Hilbert space $\mathcal{H} = \mathbb{C}^n$, find a code $\mathcal{C} \subset \mathcal{H}$ with maximal dimension such that \mathcal{C} detects \mathcal{E} .

Question (Convex Geometry)

Given n points in Euclidean space \mathbb{R}^d , find a maximal partition of the n points into r disjoint subsets such that the convex hull spanned by each subset has a common intersection.

• The convex hulls of $\vec{v}_1, \ldots, \vec{v}_m \in \mathbb{R}^d$ consists of points of the form $\sum_{i=1}^m \beta^i \vec{v}_i$, where $\beta^i \in [0, 1]$ and $\sum_i \beta^i = 1$

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

Theorem (Quantum Code)

For a space spanned by d commuting errors $\mathcal{E} = \text{span}\{I, E_1, \dots, E_d\}$, on n-dimensional Hilbert space \mathbb{C}^n , there exists a code \mathcal{C} with dimension $\lceil \frac{n}{d+1} \rceil$ that detects \mathcal{E} .

Theorem (Convex Geometry, due to Tverberg)

For any set of n points in d-dimensional Euclidean space \mathbb{R}^d , there exists a partition of the n points into $r = \lceil \frac{n}{d+1} \rceil$ disjoint subsets Y_1, \ldots, Y_r such that $\operatorname{conv}(Y_1) \cap \cdots \cap \operatorname{conv}(Y_r) \neq \emptyset$.

Ruochuan Xu Quantum Error Detection and Convex Geometry

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

Theorem (Quantum Code)

For a space spanned by d commuting errors $\mathcal{E} = \text{span}\{I, E_1, \dots, E_d\}$, on n-dimensional Hilbert space \mathbb{C}^n , there exists a code \mathcal{C} with dimension $\lceil \frac{n}{d+1} \rceil$ that detects \mathcal{E} .

Theorem (Convex Geometry, due to Tverberg)

For any set of n points in d-dimensional Euclidean space \mathbb{R}^d , there exists a partition of the n points into $r = \lceil \frac{n}{d+1} \rceil$ disjoint subsets Y_1, \ldots, Y_r such that $conv(Y_1) \cap \cdots \cap conv(Y_r) \neq \emptyset$.

SOR

・ロト ・回ト ・ヨト ・ヨト

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	●O	00	00000

Theorem

A code $C \subset H$ can detect an error E if the associated projection P_C satisfies

 $P_{\mathcal{C}}EP_{\mathcal{C}} = \epsilon P_{\mathcal{C}}$

for some $\epsilon \in \mathbb{C}$.

- Equivalently, $E|\psi\rangle = \epsilon |\psi\rangle + |\psi^{\perp}\rangle$ for all $|\psi\rangle \in C$, where $|\psi^{\perp}\rangle \perp C$.
- Error detection goes as follows
- Perform a Boolean measurement *i.e.* ask a YES or NO question: Is the state $E | \psi \rangle$ inside C?
- If YES, then the state after measurement is |ψ⟩, and we recovered it uncontaminated.
- ullet If NO, then we detect an error, and the state after measurement lies in $\mathcal{C}^{\perp}.$

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	•0	00	00000

Theorem

A code $C \subset H$ can detect an error E if the associated projection P_C satisfies

 $P_{\mathcal{C}}EP_{\mathcal{C}} = \epsilon P_{\mathcal{C}}$

for some $\epsilon \in \mathbb{C}$.

- Equivalently, $E|\psi\rangle = \epsilon |\psi\rangle + |\psi^{\perp}\rangle$ for all $|\psi\rangle \in C$, where $|\psi^{\perp}\rangle \perp C$.
- Error detection goes as follows
- Perform a Boolean measurement *i.e.* ask a YES or NO question: Is the state $E |\psi\rangle$ inside C?
- \blacksquare If YES, then the state after measurement is $|\psi\rangle,$ and we recovered it uncontaminated.
- If NO, then we detect an error, and the state after measurement lies in \mathcal{C}^{\perp} .

= nac

イロト 不同 トイヨト イヨト

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	•0	00	00000

Theorem

A code $C \subset H$ can detect an error E if the associated projection P_C satisfies

 $P_{\mathcal{C}}EP_{\mathcal{C}} = \epsilon P_{\mathcal{C}}$

for some $\epsilon \in \mathbb{C}$.

- Equivalently, $E|\psi\rangle = \epsilon |\psi\rangle + |\psi^{\perp}\rangle$ for all $|\psi\rangle \in C$, where $|\psi^{\perp}\rangle \perp C$.
- Error detection goes as follows
- Perform a Boolean measurement *i.e.* ask a YES or NO question: Is the state $E |\psi\rangle$ inside C?
- \blacksquare If YES, then the state after measurement is $|\psi\rangle,$ and we recovered it uncontaminated.
- If NO, then we detect an error, and the state after measurement lies in \mathcal{C}^{\perp} .

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	•0	00	00000

Theorem

A code $C \subset H$ can detect an error E if the associated projection P_C satisfies

$$P_{\mathcal{C}}EP_{\mathcal{C}} = \epsilon P_{\mathcal{C}}$$

for some $\epsilon \in \mathbb{C}$.

- Equivalently, $E|\psi\rangle = \epsilon |\psi\rangle + |\psi^{\perp}\rangle$ for all $|\psi\rangle \in C$, where $|\psi^{\perp}\rangle \perp C$.
- Error detection goes as follows
- Perform a Boolean measurement *i.e.* ask a YES or NO question: Is the state $E |\psi\rangle$ inside C?
- \blacksquare If YES, then the state after measurement is $|\psi\rangle,$ and we recovered it uncontaminated.
- If NO, then we detect an error, and the state after measurement lies in \mathcal{C}^{\perp} .

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	•0	00	00000

Theorem

A code $C \subset H$ can detect an error E if the associated projection P_C satisfies

$$P_{\mathcal{C}}EP_{\mathcal{C}} = \epsilon P_{\mathcal{C}}$$

for some $\epsilon \in \mathbb{C}$.

- Equivalently, $E|\psi\rangle = \epsilon |\psi\rangle + |\psi^{\perp}\rangle$ for all $|\psi\rangle \in C$, where $|\psi^{\perp}\rangle \perp C$.
- Error detection goes as follows
- Perform a Boolean measurement *i.e.* ask a YES or NO question: Is the state $E |\psi\rangle$ inside C?
- \blacksquare If YES, then the state after measurement is $|\psi\rangle$, and we recovered it uncontaminated.
- If NO, then we detect an error, and the state after measurement lies in C^{\perp} .

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	•0	00	00000

Theorem

A code $C \subset H$ can detect an error E if the associated projection P_C satisfies

$$P_{\mathcal{C}}EP_{\mathcal{C}} = \epsilon P_{\mathcal{C}}$$

for some $\epsilon \in \mathbb{C}$.

- Equivalently, $E|\psi\rangle = \epsilon |\psi\rangle + |\psi^{\perp}\rangle$ for all $|\psi\rangle \in C$, where $|\psi^{\perp}\rangle \perp C$.
- Error detection goes as follows
- Perform a Boolean measurement *i.e.* ask a YES or NO question: Is the state $E |\psi\rangle$ inside C?
- \blacksquare If YES, then the state after measurement is $|\psi\rangle$, and we recovered it uncontaminated.
- If NO, then we detect an error, and the state after measurement lies in \mathcal{C}^{\perp} .

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	0	00	00000

Proposition (Suffices to consider a discrete set of errors)

If $\mathcal{C} \subset \mathcal{H}$ can detect both E and F, then it can also detect any linear combination of them.

SOR

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	0•	00	00000

Proposition (Suffices to consider a discrete set of errors)

If $C \subset H$ can detect both E and F, then it can also detect any linear combination of them.

- $P_{\mathcal{C}}EP_{\mathcal{C}} = \epsilon(E)P_{\mathcal{C}}$ and $P_{\mathcal{C}}FP_{\mathcal{C}} = \epsilon(F)P_{\mathcal{C}}$
- $\implies P_{\mathcal{C}}(\alpha E + \beta F)P_{\mathcal{C}} = (\alpha \epsilon(E) + \beta \epsilon(F))P_{\mathcal{C}}$

Proposition (Suffices to consider a discrete set of vector state in ${\cal C}$)

The error detection condition can be equivalently formulated using a set of orthonormal basis $\{|\psi_i\rangle\}$ for C:

1.
$$\langle \psi_i | E | \psi_j \rangle = 0$$
 $i \neq j$ 2. $\langle \psi_i | E | \psi_i \rangle = \epsilon(E)$ $\forall i$

• Recall the condition $E|\psi\rangle = \epsilon |\psi\rangle + |\psi^{\perp}\rangle$ for all $|\psi\rangle \in C$.

• Call $\langle \psi_i | E | \psi_i \rangle$ the slope of E w.r.t $| \psi_i \rangle$.

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	0•	00	00000

Proposition (Suffices to consider a discrete set of errors)

If $C \subset H$ can detect both E and F, then it can also detect any linear combination of them.

• $P_C E P_C = \epsilon(E) P_C$ and $P_C F P_C = \epsilon(F) P_C$

$$\blacksquare \implies P_{\mathcal{C}}(\alpha E + \beta F)P_{\mathcal{C}} = (\alpha \epsilon(E) + \beta \epsilon(F))P_{\mathcal{C}}$$

1.
$$\langle \psi_i | E | \psi_j \rangle = 0$$
 $i \neq j$ 2. $\langle \psi_i | E | \psi_i \rangle = \epsilon(E)$ $\forall i$

SOR

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	0•	00	00000

Proposition (Suffices to consider a discrete set of errors)

If $C \subset H$ can detect both E and F, then it can also detect any linear combination of them.

• $P_C E P_C = \epsilon(E) P_C$ and $P_C F P_C = \epsilon(F) P_C$

$$\blacksquare \implies P_{\mathcal{C}}(\alpha E + \beta F)P_{\mathcal{C}} = (\alpha \epsilon(E) + \beta \epsilon(F))P_{\mathcal{C}}$$

1.
$$\langle \psi_i | E | \psi_j \rangle = 0$$
 $i \neq j$ 2. $\langle \psi_i | E | \psi_i \rangle = \epsilon(E)$ $\forall i$

SOR

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	0•	00	00000

Proposition (Suffices to consider a discrete set of errors)

If $C \subset H$ can detect both E and F, then it can also detect any linear combination of them.

• $P_{\mathcal{C}}EP_{\mathcal{C}} = \epsilon(E)P_{\mathcal{C}}$ and $P_{\mathcal{C}}FP_{\mathcal{C}} = \epsilon(F)P_{\mathcal{C}}$

$$\implies P_{\mathcal{C}}(\alpha E + \beta F)P_{\mathcal{C}} = (\alpha \epsilon(E) + \beta \epsilon(F))P_{\mathcal{C}}$$

Proposition (Suffices to consider a discrete set of vector state in C)

The error detection condition can be equivalently formulated using a set of orthonormal basis $\{|\psi_i\rangle\}$ for C:

1.
$$\langle \psi_i | E | \psi_j \rangle = 0$$
 $i \neq j$ 2. $\langle \psi_i | E | \psi_i \rangle = \epsilon(E)$ $\forall i$

• Recall the condition $E|\psi\rangle = \epsilon |\psi\rangle + |\psi^{\perp}\rangle$ for all $|\psi\rangle \in C$.

• Call $\langle \psi_i | E | \psi_i \rangle$ the slope of E w.r.t $| \psi_i \rangle$.

イロト 不得 とうほう イヨト

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	0•	00	00000

Proposition (Suffices to consider a discrete set of errors)

If $C \subset H$ can detect both E and F, then it can also detect any linear combination of them.

• $P_{\mathcal{C}}EP_{\mathcal{C}} = \epsilon(E)P_{\mathcal{C}}$ and $P_{\mathcal{C}}FP_{\mathcal{C}} = \epsilon(F)P_{\mathcal{C}}$

$$\implies P_{\mathcal{C}}(\alpha E + \beta F)P_{\mathcal{C}} = (\alpha \epsilon(E) + \beta \epsilon(F))P_{\mathcal{C}}$$

Proposition (Suffices to consider a discrete set of vector state in C)

The error detection condition can be equivalently formulated using a set of orthonormal basis $\{|\psi_i\rangle\}$ for C:

1.
$$\langle \psi_i | E | \psi_j \rangle = 0$$
 $i \neq j$ 2. $\langle \psi_i | E | \psi_i \rangle = \epsilon(E)$ $\forall i$

• Recall the condition $E|\psi\rangle = \epsilon |\psi\rangle + |\psi^{\perp}\rangle$ for all $|\psi\rangle \in C$.

• Call $\langle \psi_i | E | \psi_i \rangle$ the slope of E w.r.t $| \psi_i \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	0•	00	00000

Proposition (Suffices to consider a discrete set of errors)

If $C \subset H$ can detect both E and F, then it can also detect any linear combination of them.

• $P_{\mathcal{C}}EP_{\mathcal{C}} = \epsilon(E)P_{\mathcal{C}}$ and $P_{\mathcal{C}}FP_{\mathcal{C}} = \epsilon(F)P_{\mathcal{C}}$

$$\implies P_{\mathcal{C}}(\alpha E + \beta F)P_{\mathcal{C}} = (\alpha \epsilon(E) + \beta \epsilon(F))P_{\mathcal{C}}$$

Proposition (Suffices to consider a discrete set of vector state in C)

The error detection condition can be equivalently formulated using a set of orthonormal basis $\{|\psi_i\rangle\}$ for C:

1.
$$\langle \psi_i | E | \psi_j \rangle = 0$$
 $i \neq j$ 2. $\langle \psi_i | E | \psi_i \rangle = \epsilon(E)$ $\forall i$

• Recall the condition $E|\psi\rangle = \epsilon |\psi\rangle + |\psi^{\perp}\rangle$ for all $|\psi\rangle \in C$.

• Call $\langle \psi_i | E | \psi_i \rangle$ the slope of E w.r.t $| \psi_i \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	•0	00000

• Consider $\mathcal{H} = \mathbb{C}^{2n+1}$, $E \in M_n(\mathbb{C})$, $E = E^*$

Label the real eigenvalues of *E* in increasing order as

$$\lambda_{-n} \leq \lambda_{-n+1} \leq \cdots \leq \lambda_0 \leq \ldots \leq \lambda_{n-1} \leq \lambda_n$$

- Denote the eigenstate with eigenvalue λ_k as $|k\rangle$. Consider forming a state as a linear combination of eigenstates.
- If we choose basis elements $\{|\psi_{kl}\rangle\}$ for C each as a linear combination of $|k\rangle$ and $|l\rangle$ for distinct pairs $\{k, l\}$, then we satisfy the 1st condition for error detection

$$\begin{aligned} \langle \psi_{k'l'} | E | \psi_{kl} \rangle &= (\alpha' \langle k' | + \beta' \langle l' |) E(\alpha | k \rangle + \beta | h \rangle) \\ &= (\alpha' \langle k' | + \beta' \langle l' |) (\alpha \lambda_k | k \rangle + \beta \lambda_l | h \rangle) = 0 \quad \{k', l'\} \neq \{k, l\} \end{aligned}$$

Need to satisfy the 2nd condition

$$\langle \psi_{kl} | E | \psi_{kl} \rangle = \epsilon \quad \forall \{k, l\} \text{ for some } \epsilon$$

• For k < l, let $|\psi_{kl}\rangle = \alpha |k\rangle + \beta |l\rangle$, Then

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	•0	00000

- Consider $\mathcal{H} = \mathbb{C}^{2n+1}$, $E \in M_n(\mathbb{C})$, $E = E^*$
- Label the real eigenvalues of E in increasing order as

$$\lambda_{-n} \leq \lambda_{-n+1} \leq \cdots \leq \lambda_0 \leq \ldots \leq \lambda_{n-1} \leq \lambda_n$$

- Denote the eigenstate with eigenvalue λ_k as $|k\rangle$. Consider forming a state as a linear combination of eigenstates.
- If we choose basis elements $\{|\psi_{kl}\rangle\}$ for C each as a linear combination of $|k\rangle$ and $|l\rangle$ for distinct pairs $\{k, l\}$, then we satisfy the 1st condition for error detection

$$\begin{aligned} \langle \psi_{k'l'} | E | \psi_{kl} \rangle &= (\alpha' \langle k' | + \beta' \langle l' |) E(\alpha | k \rangle + \beta | h \rangle) \\ &= (\alpha' \langle k' | + \beta' \langle l' |) (\alpha \lambda_k | k \rangle + \beta \lambda_l | h \rangle) = 0 \quad \{k', l'\} \neq \{k, l\} \end{aligned}$$

Need to satisfy the 2nd condition

$$\langle \psi_{kl} | E | \psi_{kl}
angle = \epsilon \quad \forall \{k, l\} \quad \text{for some } \epsilon$$

• For k < l, let $|\psi_{kl}\rangle = \alpha |k\rangle + \beta |l\rangle$, Then

University of Chicago

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	•0	00000

- Consider $\mathcal{H} = \mathbb{C}^{2n+1}$, $E \in M_n(\mathbb{C})$, $E = E^*$
- Label the real eigenvalues of E in increasing order as

$$\lambda_{-n} \leq \lambda_{-n+1} \leq \cdots \leq \lambda_0 \leq \ldots \leq \lambda_{n-1} \leq \lambda_n$$

- Denote the eigenstate with eigenvalue λ_k as $|k\rangle$. Consider forming a state as a linear combination of eigenstates.
- If we choose basis elements $\{|\psi_{kl}\rangle\}$ for C each as a linear combination of $|k\rangle$ and $|l\rangle$ for distinct pairs $\{k, l\}$, then we satisfy the 1st condition for error detection

$$\begin{aligned} \langle \psi_{k'l'} | E | \psi_{kl} \rangle &= (\alpha' \langle k' | + \beta' \langle l' |) E(\alpha | k \rangle + \beta | h \rangle) \\ &= (\alpha' \langle k' | + \beta' \langle l' |) (\alpha \lambda_k | k \rangle + \beta \lambda_l | h \rangle) = 0 \quad \{k', l'\} \neq \{k, l\} \end{aligned}$$

Need to satisfy the 2nd condition

$$\langle \psi_{kl} | E | \psi_{kl}
angle = \epsilon \quad \forall \{k, l\} \quad \text{for some } \epsilon$$

• For k < l, let $|\psi_{kl}\rangle = \alpha |k\rangle + \beta |l\rangle$, Then

$$\begin{aligned} \langle \psi_{kl} | E | \psi_{kl} \rangle &= (\alpha^* \langle k | + \beta^* \langle l | E (\alpha | k \rangle + \beta | l \rangle) \\ &= |\alpha|^2 \lambda_k + |\beta|^2 \lambda_l \\ &= |\alpha|^2 \lambda_k + (1 - |\alpha|^2) \lambda_l \in [\lambda_k, \lambda_l] \\ &= |\alpha|^2 \lambda_k + (1 - |\alpha|^2) \lambda_l \in [\lambda_k, \lambda_l] \end{aligned}$$

University of Chicago

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	•0	00000

- Consider $\mathcal{H} = \mathbb{C}^{2n+1}$, $E \in M_n(\mathbb{C})$, $E = E^*$
- Label the real eigenvalues of E in increasing order as

$$\lambda_{-n} \leq \lambda_{-n+1} \leq \cdots \leq \lambda_0 \leq \ldots \leq \lambda_{n-1} \leq \lambda_n$$

- Denote the eigenstate with eigenvalue λ_k as $|k\rangle$. Consider forming a state as a linear combination of eigenstates.
- If we choose basis elements $\{|\psi_{kl}\rangle\}$ for C each as a linear combination of $|k\rangle$ and $|l\rangle$ for distinct pairs $\{k, l\}$, then we satisfy the 1st condition for error detection

$$\begin{aligned} \langle \psi_{k'l'} | E | \psi_{kl} \rangle &= (\alpha' \langle k' | + \beta' \langle l' |) E(\alpha | k \rangle + \beta | l \rangle) \\ &= (\alpha' \langle k' | + \beta' \langle l' |) (\alpha \lambda_k | k \rangle + \beta \lambda_l | l \rangle) = 0 \quad \{k', l'\} \neq \{k, l\} \end{aligned}$$

Need to satisfy the 2nd condition

$$\langle \psi_{kl} | E | \psi_{kl} \rangle = \epsilon \quad \forall \{k, l\} \quad \text{for some } \epsilon$$

• For k < l, let $|\psi_{kl}\rangle = \alpha |k\rangle + \beta |l\rangle$, Then

3

University of Chicago

Ruochuan Xu

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	•0	00000

- Consider $\mathcal{H} = \mathbb{C}^{2n+1}$, $E \in M_n(\mathbb{C})$, $E = E^*$
- Label the real eigenvalues of E in increasing order as

$$\lambda_{-n} \leq \lambda_{-n+1} \leq \cdots \leq \lambda_0 \leq \ldots \leq \lambda_{n-1} \leq \lambda_n$$

- Denote the eigenstate with eigenvalue λ_k as $|k\rangle$. Consider forming a state as a linear combination of eigenstates.
- If we choose basis elements $\{|\psi_{kl}\rangle\}$ for C each as a linear combination of $|k\rangle$ and $|l\rangle$ for distinct pairs $\{k, l\}$, then we satisfy the 1st condition for error detection

$$\begin{aligned} \langle \psi_{k'l'} | E | \psi_{kl} \rangle &= (\alpha' \langle k' | + \beta' \langle l' |) E(\alpha | k \rangle + \beta | l \rangle) \\ &= (\alpha' \langle k' | + \beta' \langle l' |) (\alpha \lambda_k | k \rangle + \beta \lambda_l | l \rangle) = 0 \quad \{k', l'\} \neq \{k, l\} \end{aligned}$$

Need to satisfy the 2nd condition

$$\langle \psi_{kl} | \mathbf{E} | \psi_{kl} \rangle = \epsilon \quad \forall \{k, l\} \text{ for some } \epsilon$$

For k < l, let $|\psi_{kl}\rangle = \alpha |k\rangle + \beta |l\rangle$, Then

$$\begin{aligned} \langle \psi_{kl} | E | \psi_{kl} \rangle &= (\alpha^* \langle k | + \beta^* \langle l |) E(\alpha | k \rangle + \beta | l \rangle) \\ &= |\alpha|^2 \lambda_k + |\beta|^2 \lambda_l \\ &= |\alpha|^2 \lambda_k + (1 - |\alpha|^2) \lambda_l \in [\lambda_k, \lambda_l] \end{aligned}$$

Ruochuan Xu

Quantum Error Detection and Convex Geometry

= nac

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	•0	00000

- Consider $\mathcal{H} = \mathbb{C}^{2n+1}$, $E \in M_n(\mathbb{C})$, $E = E^*$
- Label the real eigenvalues of E in increasing order as

$$\lambda_{-n} \leq \lambda_{-n+1} \leq \cdots \leq \lambda_0 \leq \ldots \leq \lambda_{n-1} \leq \lambda_n$$

- Denote the eigenstate with eigenvalue λ_k as $|k\rangle$. Consider forming a state as a linear combination of eigenstates.
- If we choose basis elements $\{|\psi_{kl}\rangle\}$ for C each as a linear combination of $|k\rangle$ and $|l\rangle$ for distinct pairs $\{k, l\}$, then we satisfy the 1st condition for error detection

$$\begin{aligned} \langle \psi_{k'l'} | E | \psi_{kl} \rangle &= (\alpha' \langle k' | + \beta' \langle l' |) E(\alpha | k \rangle + \beta | l \rangle) \\ &= (\alpha' \langle k' | + \beta' \langle l' |) (\alpha \lambda_k | k \rangle + \beta \lambda_l | l \rangle) = 0 \quad \{k', l'\} \neq \{k, l\} \end{aligned}$$

Need to satisfy the 2nd condition

$$\langle \psi_{kl} | \mathbf{E} | \psi_{kl}
angle = \epsilon \quad \forall \{\mathbf{k}, l\} \quad \text{for some } \epsilon$$

• For k < l, let $|\psi_{kl}\rangle = \alpha |k\rangle + \beta |l\rangle$, Then

$$\begin{aligned} \langle \psi_{kl} | E | \psi_{kl} \rangle &= \left(\alpha^* \left\langle k \right| + \beta^* \left\langle l \right\rangle \right) E\left(\alpha \left| k \right\rangle + \beta \left| l \right\rangle \right) \\ &= \left| \alpha \right|^2 \lambda_k + \left| \beta \right|^2 \lambda_l \\ &= \left| \alpha \right|^2 \lambda_k + \left(1 - \left| \alpha \right|^2 \right) \lambda_l \in [\lambda_k, \lambda_l] \end{aligned}$$

Ruochuan Xu

Quantum Error Detection and Convex Geometry

SOR

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	0	00000

• We have $\langle \psi_{kl} | E | \psi_{kl} \rangle \in [\lambda_k, \lambda_l]$

• Choose $\epsilon = \lambda_0$

dim
$$C = n + 1$$
 dim $H = 2n + 1$

3 University of Chicago

Sac

Quantum Error Detection and Convex Geometry

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	0	00000

- We have $\langle \psi_{kl} | E | \psi_{kl} \rangle \in [\lambda_k, \lambda_l]$
- Choose $\epsilon = \lambda_0$

3 University of Chicago

nac

<ロト <回ト < 注ト < 注ト -

Quantum Error Detection and Convex Geometry

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	0	00000

- We have $\langle \psi_{kl} | E | \psi_{kl} \rangle \in [\lambda_k, \lambda_l]$
- Choose $\epsilon = \lambda_0$

3 University of Chicago

nac

<ロト <回ト < 注ト < 注ト -

Quantum Error Detection and Convex Geometry

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	0	00000

- We have $\langle \psi_{kl} | E | \psi_{kl} \rangle \in [\lambda_k, \lambda_l]$
- Choose $\epsilon = \lambda_0$

3 University of Chicago

500

・ロト ・回ト ・ヨト ・ヨト

Quantum Error Detection and Convex Geometry

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	0	00000

- We have $\langle \psi_{kl} | E | \psi_{kl} \rangle \in [\lambda_k, \lambda_l]$
- Choose $\epsilon = \lambda_0$

• The coefficients α_k , β_k can be chosen appropriately such that

 $\langle \psi_k | E | \psi_k \rangle = \lambda_0 \quad \forall k$

 $\dim \mathcal{C} = n+1 \qquad \dim \mathcal{H} = 2n+1$

University of Chicago

<□> <回> <回> < 回> < 回> < 回> < 回> < 回> < 0 < 0

Quantum Error Detection and Convex Geometry

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	0	00000

- We have $\langle \psi_{kl} | E | \psi_{kl} \rangle \in [\lambda_k, \lambda_l]$
- Choose $\epsilon = \lambda_0$

• The coefficients α_k , β_k can be chosen appropriately such that

$$\langle \psi_k | E | \psi_k \rangle = \lambda_0 \quad \forall k$$

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

500

University of Chicago

$$\dim \mathcal{C} = n+1 \qquad \dim \mathcal{H} = 2n+1$$

Ruochuan Xu

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	•0000

- Detecting one error *E* is equivalent to detecting all errors in the error space $\mathcal{E} = \text{span} \{I, E\}$
- Consider $\mathcal{E} = \text{span} \{I, E_1, \dots, E_d\}$, $\mathcal{H} = \mathbb{C}^n$, where $E_a^* = E_a \forall a$ and $E_a E_b = E_b E_a$
- Let $\vec{E} := (E_1, \ldots, E_d)$. Then we can find simultaneous eigenstates $|1\rangle, \ldots, |n\rangle$ such that $\vec{E} |m\rangle = \lambda_m |m\rangle$.
- Consider a subset Y ⊂ {1,..., n}. Form a state as a linear combination of eigenstates with indices in Y:

$$|\psi\rangle \coloneqq \sum_{m \in Y} \sqrt{\beta^m} \, |m\rangle$$

$$\begin{split} \langle \psi | \vec{E} | \psi \rangle &= \Big(\sum_{m' \in Y} \sqrt{\beta^{m'}} \langle m' | \Big) \ \vec{E} \left(\sum_{m \in Y} \sqrt{\beta^m} | m \rangle \right) \\ &= \Big(\sum_{m' \in Y} \sqrt{\beta^{m'}} \langle m | \Big) \left(\sum_{m \in Y} \vec{\lambda}_m \sqrt{\beta^m} | m \rangle \right) \quad = \sum_{m \in Y} \beta^m \vec{\lambda}_m \end{split}$$

University of Chicago

3

SOR

イロト イポト イヨト イヨト

Quantum Error Detection and Convex Geometry

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	•0000

- Detecting one error E is equivalent to detecting all errors in the error space
 \$\mathcal{E}\$ = span {I, E}
- Consider $\mathcal{E} = \text{span} \{I, E_1, \dots, E_d\}$, $\mathcal{H} = \mathbb{C}^n$, where $E_a^* = E_a \forall a$ and $E_a E_b = E_b E_a$
- Let $\vec{E} \coloneqq (E_1, \ldots, E_d)$. Then we can find simultaneous eigenstates $|1\rangle, \ldots, |n\rangle$ such that $\vec{E} |m\rangle = \vec{\lambda}_m |m\rangle$.
- Consider a subset Y ⊂ {1,..., n}. Form a state as a linear combination of eigenstates with indices in Y:

$$|\psi\rangle \coloneqq \sum_{m \in Y} \sqrt{\beta^m} \, |m\rangle$$

$$\begin{split} \langle \psi | \vec{E} | \psi \rangle &= \Big(\sum_{m' \in Y} \sqrt{\beta^{m'}} \langle m' | \Big) \ \vec{E} \left(\sum_{m \in Y} \sqrt{\beta^m} | m \rangle \right) \\ &= \Big(\sum_{m' \in Y} \sqrt{\beta^{m'}} \langle m | \Big) \left(\sum_{m \in Y} \vec{\lambda}_m \sqrt{\beta^m} | m \rangle \right) \quad = \sum_{m \in Y} \beta^m \vec{\lambda}_m \end{split}$$

Ruochuan Xu Quantum Error Detection and Convex Geometry

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	•0000

- Detecting one error E is equivalent to detecting all errors in the error space
 \$\mathcal{E}\$ = span {I, E}
- Consider $\mathcal{E} = \text{span} \{I, E_1, \dots, E_d\}$, $\mathcal{H} = \mathbb{C}^n$, where $E_a^* = E_a \forall a$ and $E_a E_b = E_b E_a$
- Let $\vec{E} := (E_1, \dots, E_d)$. Then we can find simultaneous eigenstates $|1\rangle, \dots, |n\rangle$ such that $\vec{E} |m\rangle = \lambda m |m\rangle$.
- Consider a subset Y ⊂ {1,..., n}. Form a state as a linear combination of eigenstates with indices in Y:

$$|\psi\rangle \coloneqq \sum_{m \in Y} \sqrt{\beta^m} \, |m\rangle$$

$$\begin{split} \langle \psi | \vec{E} | \psi \rangle &= \Big(\sum_{m' \in Y} \sqrt{\beta^{m'}} \langle m' | \Big) \vec{E} \left(\sum_{m \in Y} \sqrt{\beta^m} | m \rangle \right) \\ &= \Big(\sum_{m' \in Y} \sqrt{\beta^{m'}} \langle m | \Big) \left(\sum_{m \in Y} \vec{\lambda}_m \sqrt{\beta^m} | m \rangle \right) \quad = \sum_{m \in Y} \beta^m \vec{\lambda}_m \end{split}$$

Ruochuan Xu Quantum Error Detection and Convex Geometry

= nar

イロト 不同 トイヨト イヨト

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	•0000

- Detecting one error E is equivalent to detecting all errors in the error space
 \$\mathcal{E}\$ = span {I, E}
- Consider $\mathcal{E} = \text{span} \{I, E_1, \dots, E_d\}$, $\mathcal{H} = \mathbb{C}^n$, where $E_a^* = E_a \forall a$ and $E_a E_b = E_b E_a$
- Let $\vec{E} := (E_1, \dots, E_d)$. Then we can find simultaneous eigenstates $|1\rangle, \dots, |n\rangle$ such that $\vec{E} |m\rangle = \lambda_m |m\rangle$.
- Consider a subset Y ⊂ {1,..., n}. Form a state as a linear combination of eigenstates with indices in Y:

$$|\psi\rangle \coloneqq \sum_{m \in Y} \sqrt{\beta^m} \, |m
angle$$

$$\begin{split} \langle \psi | \vec{E} | \psi \rangle &= \Big(\sum_{m' \in Y} \sqrt{\beta^{m'}} \langle m' | \Big) \vec{E} \left(\sum_{m \in Y} \sqrt{\beta^m} | m \rangle \right) \\ &= \Big(\sum_{m' \in Y} \sqrt{\beta^{m'}} \langle m | \Big) \left(\sum_{m \in Y} \vec{\lambda}_m \sqrt{\beta^m} | m \rangle \right) \quad = \sum_{m \in Y} \beta^m \vec{\lambda}_m \end{split}$$

Ruochuan Xu Quantum Error Detection and Convex Geometry

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	•0000

- Detecting one error E is equivalent to detecting all errors in the error space
 \$\mathcal{E}\$ = span {I, E}
- Consider $\mathcal{E} = \text{span} \{I, E_1, \dots, E_d\}$, $\mathcal{H} = \mathbb{C}^n$, where $E_a^* = E_a \forall a$ and $E_a E_b = E_b E_a$
- Let $\vec{E} := (E_1, \dots, E_d)$. Then we can find simultaneous eigenstates $|1\rangle, \dots, |n\rangle$ such that $\vec{E} |m\rangle = \lambda_m |m\rangle$.
- Consider a subset Y ⊂ {1,..., n}. Form a state as a linear combination of eigenstates with indices in Y:

$$|\psi\rangle \coloneqq \sum_{m \in Y} \sqrt{\beta^m} \, |m\rangle$$

$$\begin{split} \langle \psi | \vec{E} | \psi \rangle &= \Big(\sum_{m' \in Y} \sqrt{\beta^{m'}} \langle m' | \Big) \ \vec{E} \ \Big(\sum_{m \in Y} \sqrt{\beta^m} \, | m \rangle \Big) \\ &= \Big(\sum_{m' \in Y} \sqrt{\beta^{m'}} \, \langle m | \Big) \ \Big(\sum_{m \in Y} \vec{\lambda}_m \sqrt{\beta^m} \, | m \rangle \Big) \quad = \sum_{m \in Y} \beta^m \vec{\lambda}_m \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Code and Geometry G	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000 0	00	00	0000

- Consider a partition of $\{1, \ldots, n\}$ into *r* disjoint subsets $\{Y_k\}$.
- Choose basis elements of C each as a linear combination of eigenstates with indices in Y_k :

$$|\psi_k\rangle = \sum_{m \in Y_k} \sqrt{\beta_k^m} |m\rangle$$

- Already satisfies the 1st condition for error detection: $\langle \psi_k | \vec{E} | \psi_l \rangle = 0$ $k \neq l$
- Need to choose $\epsilon_1, \ldots, \epsilon_d$ and coefficients β_k^m such that $\langle \psi_k | E_a | \psi_k \rangle = \epsilon_a$ for $a = 1, \ldots, d$ and for all k.
- Equivalently, need to find $\vec{\epsilon} \in \mathbb{R}^d$ and β_k^m such that $\langle \psi_k | \vec{E} | \psi_k \rangle = \vec{\epsilon} \quad \forall k$
- As previously calculated,

$$\langle \psi_k | \vec{E} | \psi_k \rangle = \sum_{m \in Y_k} \beta_k^m \vec{\lambda}_m,$$

where the coefficients β_k^m satisfy $\sum_{m \in Y_k} \beta_k^m = 1$.

<ロト <回ト < 注ト < 注ト -

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	0000

- Consider a partition of $\{1, \ldots, n\}$ into r disjoint subsets $\{Y_k\}$.
- Choose basis elements of C each as a linear combination of eigenstates with indices in Y_k:

$$|\psi_k\rangle = \sum_{m \in Y_k} \sqrt{\beta_k^m} |m\rangle$$

- Already satisfies the 1st condition for error detection: $\langle \psi_k | \vec{E} | \psi_l \rangle = 0$ $k \neq l$
- Need to choose $\epsilon_1, \ldots, \epsilon_d$ and coefficients β_k^m such that $\langle \psi_k | E_a | \psi_k \rangle = \epsilon_a$ for $a = 1, \ldots, d$ and for all k.
- Equivalently, need to find $\vec{\epsilon} \in \mathbb{R}^d$ and β_k^m such that $\langle \psi_k | \vec{E} | \psi_k \rangle = \vec{\epsilon} \quad \forall k$
- As previously calculated,

$$\langle \psi_k | \vec{E} | \psi_k \rangle = \sum_{m \in Y_k} \beta_k^m \vec{\lambda}_m,$$

where the coefficients β_k^m satisfy $\sum_{m \in Y_k} \beta_k^m = 1$.

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	0000

- Consider a partition of $\{1, \ldots, n\}$ into r disjoint subsets $\{Y_k\}$.
- Choose basis elements of C each as a linear combination of eigenstates with indices in Y_k:

$$|\psi_k\rangle = \sum_{m \in Y_k} \sqrt{\beta_k^m} |m\rangle$$

- Already satisfies the 1st condition for error detection: $\langle \psi_k | \vec{E} | \psi_l \rangle = 0$ $k \neq l$
- Need to choose $\epsilon_1, \ldots, \epsilon_d$ and coefficients β_k^m such that $\langle \psi_k | E_a | \psi_k \rangle = \epsilon_a$ for $a = 1, \ldots, d$ and for all k.
- Equivalently, need to find $\vec{\epsilon} \in \mathbb{R}^d$ and β_k^m such that $\langle \psi_k | \vec{E} | \psi_k \rangle = \vec{\epsilon} \quad \forall k$
- As previously calculated,

$$\langle \psi_k | \vec{E} | \psi_k \rangle = \sum_{m \in Y_k} \beta_k^m \vec{\lambda}_m,$$

where the coefficients β_k^m satisfy $\sum_{m \in Y_k} \beta_k^m = 1$.

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	0000

- Consider a partition of $\{1, \ldots n\}$ into *r* disjoint subsets $\{Y_k\}$.
- Choose basis elements of C each as a linear combination of eigenstates with indices in Y_k:

$$|\psi_k\rangle = \sum_{m \in Y_k} \sqrt{\beta_k^m} |m\rangle$$

- Already satisfies the 1st condition for error detection: $\langle \psi_k | \vec{E} | \psi_l \rangle = 0$ $k \neq l$
- Need to choose $\epsilon_1, \ldots, \epsilon_d$ and coefficients β_k^m such that $\langle \psi_k | E_a | \psi_k \rangle = \epsilon_a$ for $a = 1, \ldots, d$ and for all k.
- Equivalently, need to find $\vec{\epsilon} \in \mathbb{R}^d$ and β_k^m such that $\langle \psi_k | \vec{E} | \psi_k \rangle = \vec{\epsilon} \quad \forall k$
- As previously calculated,

$$\langle \psi_k | \vec{E} | \psi_k \rangle = \sum_{m \in Y_k} \beta_k^m \vec{\lambda}_m,$$

where the coefficients β_k^m satisfy $\sum_{m \in Y_k} \beta_k^m = 1$.

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	0000

- Consider a partition of $\{1, \ldots n\}$ into *r* disjoint subsets $\{Y_k\}$.
- Choose basis elements of C each as a linear combination of eigenstates with indices in Y_k:

$$|\psi_k\rangle = \sum_{m \in Y_k} \sqrt{\beta_k^m} |m\rangle$$

- Already satisfies the 1st condition for error detection: $\langle \psi_k | \vec{E} | \psi_l \rangle = 0$ $k \neq l$
- Need to choose $\epsilon_1, \ldots, \epsilon_d$ and coefficients β_k^m such that $\langle \psi_k | E_a | \psi_k \rangle = \epsilon_a$ for $a = 1, \ldots, d$ and for all k.
- Equivalently, need to find $\vec{\epsilon} \in \mathbb{R}^d$ and β_k^m such that $\langle \psi_k | \vec{E} | \psi_k \rangle = \vec{\epsilon} \quad \forall k$
- As previously calculated,

$$\langle \psi_k | \vec{E} | \psi_k \rangle = \sum_{m \in Y_k} \beta_k^m \vec{\lambda}_m,$$

where the coefficients β_k^m satisfy $\sum_{m \in Y_k} \beta_k^m = 1$.

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	0000

- Consider a partition of $\{1, \ldots, n\}$ into r disjoint subsets $\{Y_k\}$.
- Choose basis elements of C each as a linear combination of eigenstates with indices in Y_k:

$$|\psi_k\rangle = \sum_{m \in Y_k} \sqrt{\beta_k^m} |m\rangle$$

- Already satisfies the 1st condition for error detection: $\langle \psi_k | \vec{E} | \psi_l \rangle = 0$ $k \neq l$
- Need to choose $\epsilon_1, \ldots, \epsilon_d$ and coefficients β_k^m such that $\langle \psi_k | E_a | \psi_k \rangle = \epsilon_a$ for $a = 1, \ldots, d$ and for all k.
- Equivalently, need to find $\vec{\epsilon} \in \mathbb{R}^d$ and β_k^m such that $\langle \psi_k | \vec{E} | \psi_k \rangle = \vec{\epsilon} \quad \forall k$
- As previously calculated,

$$\langle \psi_k | \vec{E} | \psi_k \rangle = \sum_{m \in Y_k} \beta_k^m \vec{\lambda}_m,$$

where the coefficients β_k^m satisfy $\sum_{m\in \mathbf{Y}_k}\beta_k^m=1.$

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

•
$$\langle \psi_k | \vec{E} | \psi_k \rangle = \sum_{m \in Y_k} \beta_k^m \vec{\lambda}_m \in \operatorname{conv} \left(\{ \vec{\lambda}_i \}_{i \in Y_k} \right).$$

• Therefore, $\vec{\epsilon}$ and β_k^m satisfying the 2nd condition exist if and only if

 $\iff \bigcap \operatorname{conv}(\{\vec{\lambda}_m\}_{m \in Y_k}) \neq \emptyset \quad (\star)$

Then $\vec{\epsilon}$ can be chosen to be any point in the interesection of the convex hulls.

By Tverberg's theorem, there exists a partition of $\{1, ..., n\}$ into $r = \lceil \frac{n}{d+1} \rceil$ disjoint subsets Y_k such that (*) holds

• dim $\mathcal{C} \geq \left\lceil \frac{n}{d+1} \right\rceil$.

・ロト ・回ト ・ヨト ・ヨト

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

•
$$\langle \psi_k | \vec{E} | \psi_k \rangle = \sum_{m \in Y_k} \beta_k^m \vec{\lambda}_m \in \operatorname{conv} \left(\{ \vec{\lambda}_i \}_{i \in Y_k} \right).$$

• Therefore, $\vec{\epsilon}$ and β_k^m satisfying the 2nd condition exist if and only if

$$\iff \bigcap \operatorname{conv} \left(\{ \vec{\lambda}_m \}_{m \in Y_k} \right) \neq \emptyset \quad (\star)$$

Then $\vec{\epsilon}$ can be chosen to be any point in the interesection of the convex hulls.

By Tverberg's theorem, there exists a partition of {1,...,n} into r = [n/d+1] disjoint subsets Y_k such that (⋆) holds

• dim $\mathcal{C} \geq \left\lceil \frac{n}{d+1} \right\rceil$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … のへで

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

• Therefore, $\vec{\epsilon}$ and β_k^m satisfying the 2nd condition exist if and only if

$$\iff \bigcap \operatorname{conv} \left(\{ \vec{\lambda}_m \}_{m \in Y_k} \right) \neq \emptyset \quad (\star)$$

- Then $\vec{\epsilon}$ can be chosen to be any point in the interesection of the convex hulls.
- By Tverberg's theorem, there exists a partition of $\{1, ..., n\}$ into $r = \lfloor \frac{n}{d+1} \rfloor$ disjoint subsets Y_k such that (*) holds

 $\dim \mathcal{C} \geq \left| \frac{n}{d+1} \right|.$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … のへで

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

•
$$\langle \psi_k | \vec{E} | \psi_k \rangle = \sum_{m \in Y_k} \beta_k^m \vec{\lambda}_m \in \operatorname{conv} \left(\{ \vec{\lambda}_i \}_{i \in Y_k} \right).$$

• Therefore, $\vec{\epsilon}$ and β_k^m satisfying the 2nd condition exist if and only if

$$\iff \bigcap \operatorname{conv}(\{\vec{\lambda}_m\}_{m\in Y_k}) \neq \emptyset \quad (\star)$$

• Then $\vec{\epsilon}$ can be chosen to be any point in the interesection of the convex hulls.

- By Tverberg's theorem, there exists a partition of $\{1, ..., n\}$ into $r = \lceil \frac{n}{d+1} \rceil$ disjoint subsets Y_k such that (\star) holds
- dim $\mathcal{C} \geq \left\lceil \frac{n}{d+1} \right\rceil$

・ロト ・回ト ・ヨト ・ヨト

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

•
$$\langle \psi_k | \vec{E} | \psi_k \rangle = \sum_{m \in Y_k} \beta_k^m \vec{\lambda}_m \in \operatorname{conv} \left(\{ \vec{\lambda}_i \}_{i \in Y_k} \right).$$

• Therefore, $\vec{\epsilon}$ and β_k^m satisfying the 2nd condition exist if and only if

$$\iff \bigcap \operatorname{conv}(\{\vec{\lambda}_m\}_{m\in Y_k}) \neq \emptyset \quad (\star)$$

 \blacksquare Then $\vec{\epsilon}$ can be chosen to be any point in the interesection of the convex hulls.

- By Tverberg's theorem, there exists a partition of {1,...,n} into r = [ⁿ/_{d+1}] disjoint subsets Y_k such that (*) holds
- dim $\mathcal{C} \geq \left\lceil \frac{n}{d+1} \right\rceil$

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

•
$$\langle \psi_k | \vec{E} | \psi_k \rangle = \sum_{m \in Y_k} \beta_k^m \vec{\lambda}_m \in \operatorname{conv} \left(\{ \vec{\lambda}_i \}_{i \in Y_k} \right).$$

• Therefore, $\vec{\epsilon}$ and β_k^m satisfying the 2nd condition exist if and only if

$$\iff \bigcap \operatorname{conv}(\{\vec{\lambda}_m\}_{m\in Y_k}) \neq \emptyset \quad (\star)$$

 \blacksquare Then $\vec{\epsilon}$ can be chosen to be any point in the interesection of the convex hulls.

■ By Tverberg's theorem, there exists a partition of {1,...,n} into r = [ⁿ/_{d+1}] disjoint subsets Y_k such that (*) holds

• dim $C \geq \left\lceil \frac{n}{d+1} \right\rceil$.

・ロト ・回ト ・ヨト ・ヨト

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

•
$$\langle \psi_k | \vec{E} | \psi_k \rangle = \sum_{m \in Y_k} \beta_k^m \vec{\lambda}_m \in \operatorname{conv} \left(\{ \vec{\lambda}_i \}_{i \in Y_k} \right).$$

• Therefore, $\vec{\epsilon}$ and β_k^m satisfying the 2nd condition exist if and only if

$$\iff \bigcap \operatorname{conv}(\{\vec{\lambda}_m\}_{m\in Y_k}) \neq \emptyset \quad (\star)$$

• Then $\vec{\epsilon}$ can be chosen to be any point in the interesection of the convex hulls.

■ By Tverberg's theorem, there exists a partition of {1,...,n} into r = [ⁿ/_{d+1}] disjoint subsets Y_k such that (*) holds

• dim
$$\mathcal{C} \geq \lceil \frac{n}{d+1} \rceil$$
.

・ロト ・回 ト ・ヨト ・ヨト

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

Key Points

- maximize dim $C \implies$ maximize the size of partition of points such that the convex hull spanned by each subset has a common intersection.
- The continuous problem of quantum error detection is discretized and geometrized.

◆□ > ◆母 > ◆臣 > ◆臣 > □臣 - のへで

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

Key Points

- maximize dim $C \implies$ maximize the size of partition of points such that the convex hull spanned by each subset has a common intersection.
- The continuous problem of quantum error detection is discretized and geometrized.

◆□ > ◆母 > ◆臣 > ◆臣 > □臣 - のへで

Code and Geometry	Quantum Error Detection	Detecting One Error	Detecting d Commuting Errors
0000	00	00	00000

Thank you

Ruochuan Xu Quantum Error Detection and Convex Geometry University of Chicago

E ∽ Q ()

(日)