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Classical Code and Sphere Packing

Question (Classical Code)
For the Hamming space H = (Z/2Z)n, find a code C ⊂ H with maximal dimension
that detects errors on d bits.

Consider the subspace of (Z/2Z)4 consisting of bit strings of even weight.
Explicitly, C = {[0000], [1111], [1100], [0011], [1010], [0101], [1001], [0110]}.
If an error occurs on one bit, the contaminated bit string will no longer lie in C.
Recall a notion of distance for two bit strings x and y, d(x, y) = weight (x − y).
Bit string in C are spaced apart.
The minimum distance between two points in C is 2.

Question (Classical Sphere Packing)
Given a metric space (X, d), find the maximal number of disjoint spheres of radius t
we can pack into X.
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Classical Code and Sphere Packing

Question (Classical Sphere Packing)
Given a metric space (X, d), find the maximal number of disjoint spheres of diameter
D we can pack into X.

For a discrete space, it is intuitive and often practical to consider a graph metric
When the metric is integer-valued, packing spheres of radius t is equivalent to
finding a minimum distance set with distance 2t + 1
For Z2 equipped with the “texicab” metric, this is a packing of spheres of radius
1, or equivalently, a minimum distance set of distance 3.
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Quantum Code and Geometry

Question (Quantum Code)
Given a space of errors E on a Hilbert space H = Cn, find a code C ⊂ H with maximal
dimension such that C detects E.

Question (Convex Geometry)
Given n points in Euclidean space Rd, find a maximal partition of the n points into r
disjoint subsets such that the convex hull spanned by each subset has a common
intersection.

The convex hulls of v⃗1, . . . , v⃗m ∈ Rd consists of points of the form
∑m

i=1 β
i⃗vi,

where βi ∈ [0, 1] and
∑

i β
i = 1

Ruochuan Xu University of Chicago
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Quantum Code and Geometry

Theorem (Quantum Code)
For a space spanned by d commuting errors E = span {I,E1, . . . ,Ed}, on n-dimensional
Hilbert space Cn, there exists a code C with dimension ⌈ n

d+1 ⌉ that detects E.

Theorem (Convex Geometry, due to Tverberg)
For any set of n points in d-dimensional Euclidean space Rd, there exists a partition of
the n points into r = ⌈ n

d+1 ⌉ disjoint subsets Y1, . . . ,Yr such that
conv (Y1) ∩ · · · ∩ conv (Yr) ̸= ∅.
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Quantum Error Detection Condition

Theorem
A code C ⊂ H can detect an error E if the associated projection PC satisfies

PCEPC = ϵPC

for some ϵ ∈ C.

Equivalently, E |ψ⟩ = ϵ |ψ⟩+
∣∣ψ⊥〉

for all |ψ⟩ ∈ C , where
∣∣ψ⊥〉

⊥ C.
Error detection goes as follows
Perform a Boolean measurement i.e. ask a YES or NO question: Is the state
E |ψ⟩ inside C?
If YES, then the state after measurement is |ψ⟩, and we recovered it
uncontaminated.
If NO, then we detect an error, and the state after measurement lies in C⊥.
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Discretization of Error

Proposition (Suffices to consider a discrete set of errors)
If C ⊂ H can detect both E and F, then it can also detect any linear combination of
them.

PCEPC = ϵ(E)PC and PCFPC = ϵ(F)PC

=⇒ PC(αE + βF)PC = (αϵ(E) + βϵ(F))PC

Proposition (Suffices to consider a discrete set of vector state in C)
The error detection condition can be eqiuvalently formulated using a set of
orthonormal basis {|ψi⟩} for C:

1. ⟨ψi|E|ψj⟩ = 0 i ̸= j 2. ⟨ψi|E|ψi⟩ = ϵ(E) ∀i

Recall the condition E |ψ⟩ = ϵ |ψ⟩+
∣∣ψ⊥〉

for all |ψ⟩ ∈ C.
Call ⟨ψi|E|ψi⟩ the slope of E w.r.t |ψi⟩.

Ruochuan Xu University of Chicago
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Detecting One Error

Consider H = C2n+1, E ∈ Mn(C), E = E∗

Label the real eigenvalues of E in increasing order as

λ−n ≤ λ−n+1 ≤ · · · ≤ λ0 ≤ . . . ≤ λn−1 ≤ λn

Denote the eigenstate with eigenvalue λk as |k⟩. Consider forming a state as a
linear combination of eigenstates.
If we choose basis elements {|ψkl⟩} for C each as a linear combination of |k⟩ and
|l⟩ for distinct pairs {k, l}, then we satisfy the 1st condition for error detection

⟨ψk′ l′ |E|ψkl⟩ = (α′ 〈k′
∣∣+ β′ 〈l′

∣∣)E (α |k⟩+ β |l⟩)
= (α′ 〈k′

∣∣+ β′ 〈l′
∣∣) (αλk |k⟩+ βλl |l⟩) = 0 {k′, l′} ̸= {k, l}

Need to satisfy the 2nd condition

⟨ψkl|E|ψkl⟩ = ϵ ∀{k, l} for some ϵ

For k < l, let |ψkl⟩ = α |k⟩+ β |l⟩, Then

⟨ψkl|E|ψkl⟩ = (α∗ ⟨k|+ β∗ ⟨l|)E (α |k⟩+ β |l⟩)
= |α| 2λk + |β| 2λl

= |α| 2λk + (1 − |α| 2)λl ∈ [λk, λl]

Ruochuan Xu University of Chicago
Quantum Error Detection and Convex Geometry
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Detecting One Error

We have ⟨ψkl|E|ψkl⟩ ∈ [λk, λl]

Choose ϵ = λ0

λ−n λ1−n · · · λ0 · · · λn−1 λn

|ψn⟩=αn|−n⟩+βn|n⟩

|ψn−1⟩=αn−1|1−n⟩+βn−1|n−1⟩

The coefficients αk, βk can be chosen appropriately such that

⟨ψk|E|ψk⟩ = λ0 ∀k

dim C = n + 1 dimH = 2n + 1

Ruochuan Xu University of Chicago
Quantum Error Detection and Convex Geometry
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Detecting d Commuting Errors

Detecting one error E is equivalent to detecting all errors in the error space
E = span {I,E}
Consider E = span {I,E1, . . . ,Ed}, H = Cn, where E∗

a = Ea ∀a and EaEb = EbEa

Let E⃗ := (E1, . . . ,Ed). Then we can find simultaneous eigenstates |1⟩ , . . . , |n⟩
such that E⃗ |m⟩ = λ⃗m |m⟩.

Consider a subset Y ⊂ {1, . . . , n}. Form a state as a linear combination of
eigenstates with indices in Y:

|ψ⟩ :=
∑
m∈Y

√
βm |m⟩

⟨ψ|E⃗|ψ⟩ =
( ∑

m′∈Y

√
βm′ 〈m′∣∣ ) E⃗

( ∑
m∈Y

√
βm |m⟩

)
=

( ∑
m′∈Y

√
βm′ ⟨m|

)( ∑
m∈Y

λ⃗m
√
βm |m⟩

)
=

∑
m∈Y

βmλ⃗m
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Detecting d Commuting Errors

Consider a partition of {1, . . . n} into r disjoint subsets {Yk}.
Choose basis elements of C each as a linear combination of eigenstates with
indices in Yk:

|ψk⟩ =
∑

m∈Yk

√
βm

k |m⟩

Already satisfies the 1st condition for error detection: ⟨ψk|E⃗|ψl⟩ = 0 k ̸= l
Need to choose ϵ1, . . . , ϵd and coefficients βm

k such that ⟨ψk|Ea|ψk⟩ = ϵa for
a = 1, . . . , d and for all k.
Equivalently, need to find ϵ⃗ ∈ Rd and βm

k such that ⟨ψk|E⃗|ψk⟩ = ϵ⃗ ∀k
As previously calculated,

⟨ψk|E⃗|ψk⟩ =
∑

m∈Yk

βm
k λ⃗m,

where the coefficients βm
k satisfy

∑
m∈Yk

βm
k = 1.
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Detecting d Commuting Errors

⟨ψk|E⃗|ψk⟩ =
∑

m∈Yk
βm

k λ⃗m ∈ conv
(
{λ⃗i}i∈Yk

)
.

Therefore, ϵ⃗ and βm
k satisfying the 2nd condition exist if and only if

⇐⇒
⋂

conv
(
{λ⃗m}m∈Yk

)
̸= ∅ (⋆)

Then ϵ⃗ can be chosen to be any point in the interesection of the convex hulls.

By Tverberg’s theorem, there exists a partition of {1, . . . , n} into r = ⌈ n
d+1 ⌉

disjoint subsets Yk such that (⋆) holds
dim C ≥ ⌈ n

d+1 ⌉.
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λ(E1)

λ(E2) λ⃗1
λ⃗2· · ·

ϵ⃗?

By Tverberg’s theorem, there exists a partition of {1, . . . , n} into r = ⌈ n
d+1 ⌉

disjoint subsets Yk such that (⋆) holds
dim C ≥ ⌈ n

d+1 ⌉.
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Key Points

maximize dim C =⇒ maximize the size of partition of points such that the
convex hull spanned by each subset has a common intersection.
The continuous problem of quantum error detection is discretized and
geometrized.
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Key Points

maximize dim C =⇒ maximize the size of partition of points such that the
convex hull spanned by each subset has a common intersection.
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Thank you
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