Elucidation of the S Protein Structure of SARS-CoV-2 Mutants

By: Michael Keith

SARS-CoV-2 & ACE2

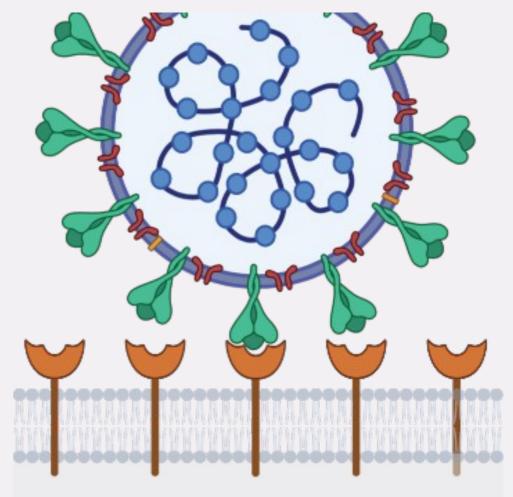
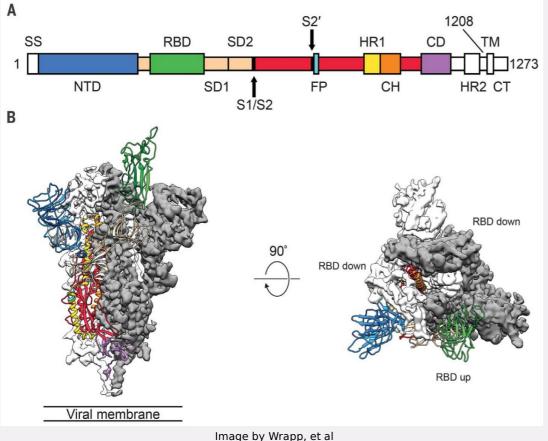


Image by Universite Catholique de Louvain


Relevance

- SARS-CoV-2 is a highly contagious respiratory virus The virus (now) has several variants, some with increased infectivity
- Previously, elucidation of the S protein structure was crucial We needed therapeutic solutions to ameliorate death numbers and lessen severity of the disease (vaccines, manufactured antibodies, etc....)
- It now is just as critical, especially as we attempt to understand the reasons for exacerbated infectivity (think the delta variant)

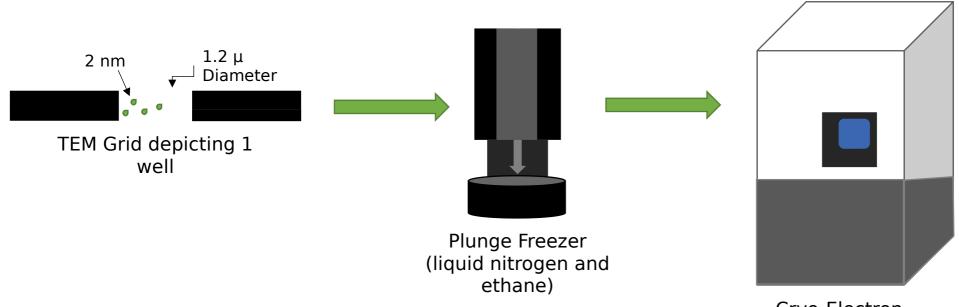
The structures/geometry between variants differ, offering better binding to ACE2

The major difference is the number of H-bonds; more = stronger binding -> useless vaccines

The S Protein

• Trimeric, metastable, glycosylated protein

What does this mean?


- Undergoes significant changes for viral fusion to host receptor
 - Facilitated by RBD's hinge-like movements (down = inaccessible)
- This image depicts various 2D structures and 3D motifs
- *Alpha helices and beta-pleated sheets Different representations – colours vs grey*

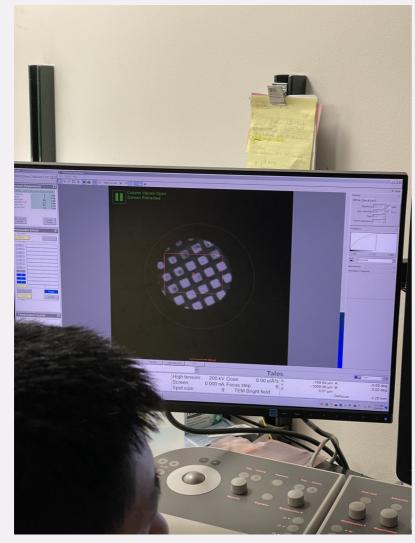
Goals

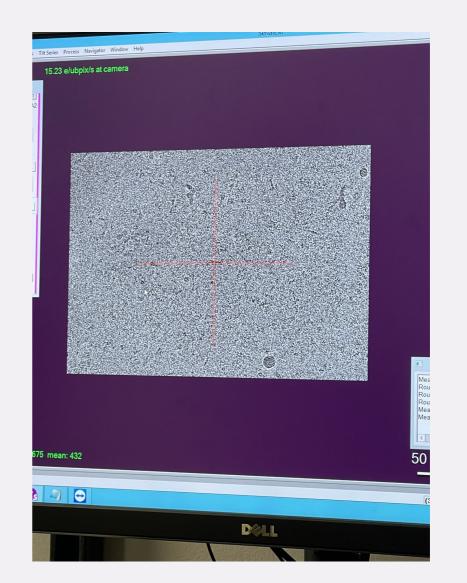
My goal is to create a high-resolution 3D reconstruction of the S protein using cryoSPARC

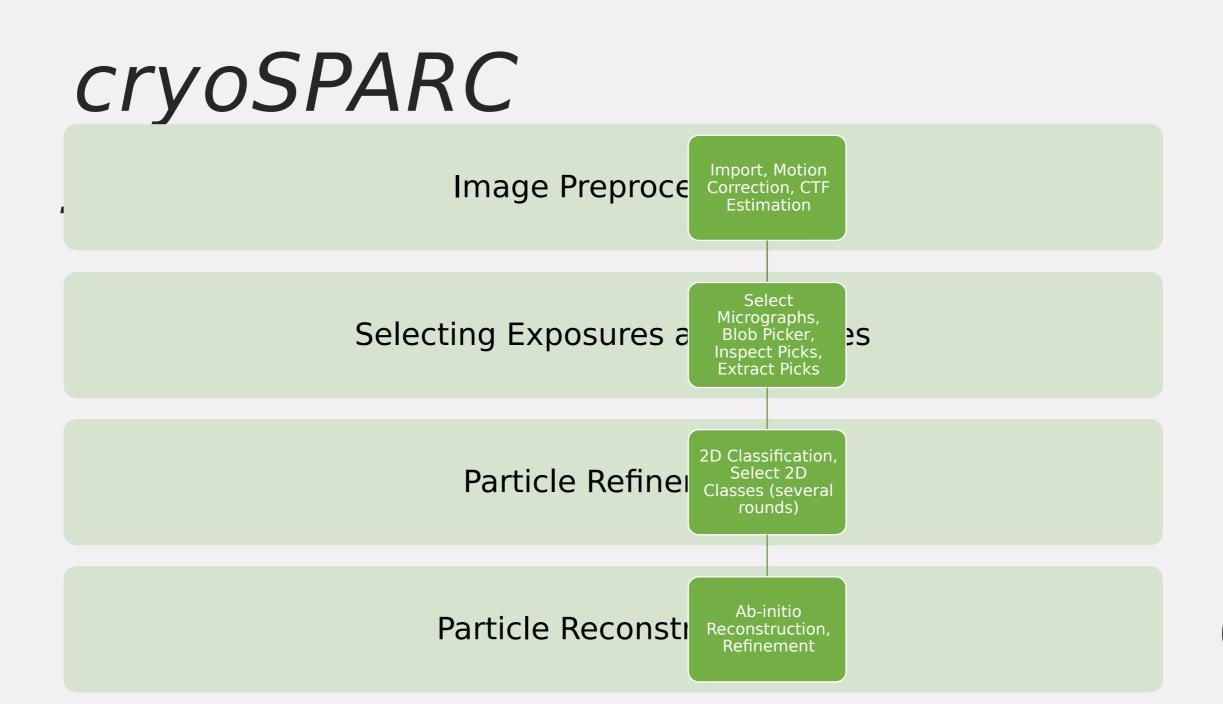
cryoSPARC is a program that analyses micrograph images to produce 3D models of microscopic particles

Cryo-EM Workflow

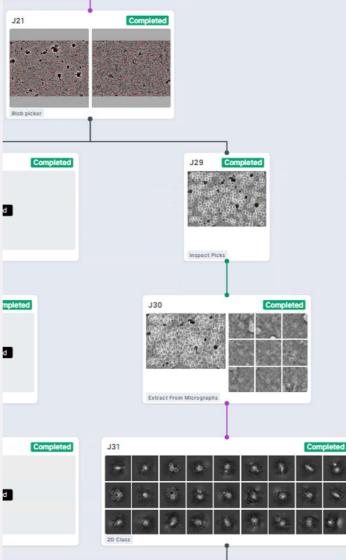
Cryo-Electron Microscope

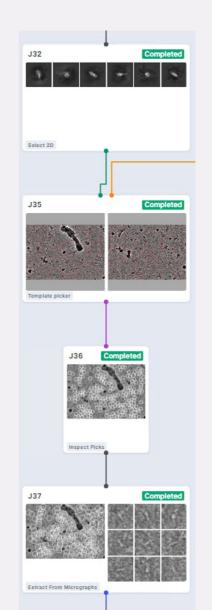

- Notice the diminutive sizes we are working with!
 We attempt to generate ≤5 Angstrom (0.5 nm) resolution images, which are obtainable with electron microscopy
- After these steps, we can process the images in cryoSPARC (or other EM processing software)

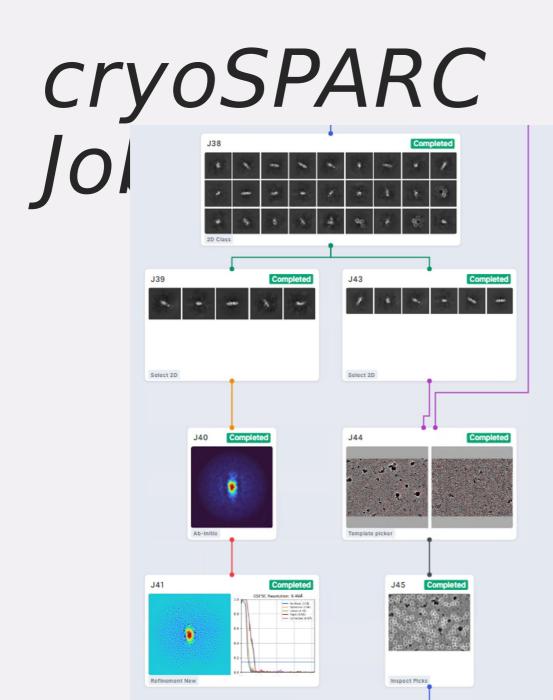

Cryo-EM Preparation



Imaging






cryoSPARC J21 1 Blob picker Import Movies J7 Completed d -5 D Patch motion (M) J11 Completed mpleted d Patch CTF (M) J16 Completed

Completed

Curate Exposures

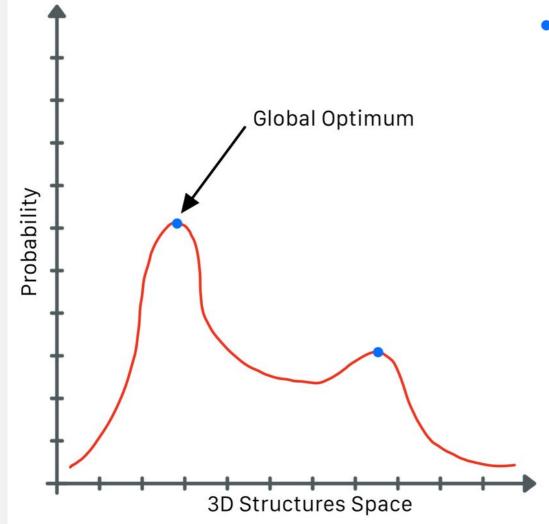
2D Classification

375 ptcls	341 ptcls	327 ptcls	326 ptcls	324 ptcls	323 ptcls	322 ptcls	321 ptcls	320 ptcls	319 ptcls
-		12	3.45	38	1		200		2.1
16.5 A 1 ess	18.1 A 1 ess	15.0 A 1 ess	16.0 A 1 ess	14.5 A 1 ess	17.5 A 1 ess	14.8 A 1 ess	16.4 A 1 ess	15.6 A 1 ess	17.4 A 1 ess
317 ptcls	317 ptcls	312 ptcls	311 ptcls	308 ptcls	307 ptcls	304 ptcls	300 ptcls	295 ptcls	288 ptcls
					Sec.				
State 1				No.		1945			
14.9 A 1 ess	25.9 A 1 ess	16.8 A 1 ess	16.0 A 1 ess	19.2 A 1 ess	15.0 A 1 ess	17.1 A 1 ess	23.2 A 1 ess	17.5 A 1 ess	16.6 A 1 ess
286 ptcls	279 ptcls	275 ptcls	266 ptcls	264 ptcls	258 ptcls	252 ptcls	251 ptcls	249 ptcls	249 ptcls
			1			25	and the second	92	
		Sector Sector			- AND AND		And the		
16.6 A 1 ess	15.6 A 1 ess	16.6 A 1 ess	18.9 A 1 ess	20.1 A 1 ess	18.1 A 1 ess	17.4 A 1 ess	17.6 A 1 ess	20.0 A 1 ess	20.2 A 1 ess
248 ptcls	245 ptcls	243 ptcls	238 ptcls	233 ptcls	229 ptcls	222 ptcls	215 ptcls	206 ptcls	203 ptcls
and the second second		and the second	19.1	12202	- State Street	Designation		- Table	in the
	1. 20							100	The second
		A STREET					A SA SA		
23.7 A 1 ess	20.3 A 1 ess	16.7 A 1 ess	19.3 A 1 ess	25.7 A 1 ess	18.1 A 1 ess	18.8 A 1 ess	20.3 A 1 ess	20.2 A 1 ess	20.7 A 1 ess

Mathematical Methods

• Ab-initio reconstruction relies on a Bayesian framework¹

 argmax is the set of points where p is maximised


 $\ensuremath{\textit{p}}$ is the probability of generating a structure, , given the images, , taken

is the pose or 3D rotation and 2D translation

• A stochastic gradient descent algorithm is utilised

This reconstruction is a non-convex optimisation problem

Mathematical Methods

• Optima • Stochastically "bounces around" the 3D space

- Runs multiple iterations using random subsets of the images taken (several)
- In doing this, the cryoSPARC can arrive at the global optimum (~the actual particle structure) Other software may get "stuck" at another optimum, resolving an incorrect structure

S Protein Models

Comparing ~9.5 Angstrom resolution to ~8 Angstrom resolution

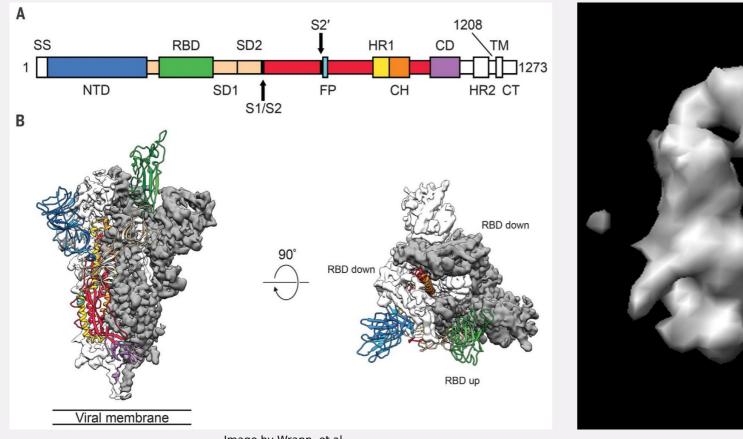
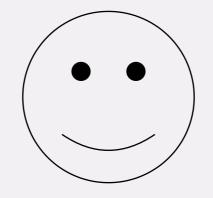


Image by Wrapp, et al

Conclusion & Future Work

- Cryo-EM is a powerful tool for imaging miniscule particles; it has the power to offer high resolutions (near-atomic distance)
- cryoSPARC is a unique software that applied mathematical algorithms to solve optimisation problems
- Given more time, I would further refine the S protein to achieve a higher resolution reconstruction (comparable to the Wrapp image)
- I would also like to compare various mutants to one another to see if there is a noticeable conformational difference
- Other highly-symmetric particles in our data set would be nice to analyse

Thank You!


Javier Arsuaga, Tamara Christiani, Daniel Cox, Sofia Jakovcevic, Apurva Mishra, Nathan Solomon, & Mariel

Vázquez Fei Guo

Emil Geisler & Kristina Moen

Jennifer Brown & Greg Kuperberg

...and, of course, all of you!

References

 [1] Punjani, Ali, et al. "CryoSPARC: Algorithms for Rapid Unsupervised Cryo-Em Structure Determination." *Nature Methods*, vol. 14, no. 3, 2017, pp. 290– 296., doi:10.1038/nmeth.4169.