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What do we want to know?

“How does fluid elasticity affect the flagellar beat of microscopic 
swimmers?”



What does it mean to swim?
“...You are put in some liquid and are allowed to deform your body in some 
manner.” -Purcell (1976)

Cyclic deformation (strokes) is optimal to keep swimming.
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Flagella and Cilia

Flagella and cilia are tail or 
hairlike filaments on 
microscopic swimming 
organisms. They propel the 
organisms through fluid by 
generating beats. 

Differences-Between-Cilia-and-Flagella.jpg (600×421) (microbiologyinfo.com)

https://www.microbiologyinfo.com/wp-content/uploads/2015/05/Differences-Between-Cilia-and-Flagella.jpg


Flagellar Beats

Dynein motors along the flagella/cilia cause them to bend. “Beats” result from coupled 
reactions from the surrounding fluid, elastic forces of the bending filament, and molecular 
motor activity. 

fig011.jpg (473×415) (biocyclopedia.com)
https://upload.wikimedia.org/wikipedia/commons/a/a7/Flagellum-beating.svg 

https://biocyclopedia.com/index/general_zoology/images/images38/fig011.jpg
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Complex Fluids - Fluid Elasticity
Complex fluids have a nonlinear 
relationship between stress and strain. 
So, they don’t behave like Newtonian 
fluids.

● Often mixtures; have polymers
● Viscosity isn’t constant
● Normal stresses from shearing
● Elastic recoil
● Yield Stress

rod_climb_clip.gif (216×144) (mit.edu)
shapeimage_1.png (700×396) (uchicago.edu)
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But modeling all these affects to the 
movements of an elastic filament is tricky… 

So, we considered a simpler model.



Follower Force Model in a Viscous Fluid

Motion of a flagella is 
influenced by a number 
of aspects due to its 
complex internal 
structure, we can 
simplify this by 
considering a 
tangential, follower 
force that is acting on 
the tip of the flagella.  

https://www.researchgate.net/profile/Charles-Lindemann/publication/41419
396/figure/fig1/AS:340639242833932@1458226132687/Schematic-diagra
m-of-the-flagellar-axoneme-in-cross-section-Structures-that-are_Q320.jpg



Equations of Motion for continuous vs two-link model

PDEs with boundary conditions ODEs with initial conditions
DeCanio 2017, R. Soc. Interface



Dynamics are similar for two-link model

=>Higher order and lower order modeling of the filament yield similar dynamics, so we will 
continue with the two link model to understand the effect of viscoelasticity

σ and Σ - ratio between strength of follower force and elastic force

Real part of ω represents growth rate, imaginary part of ω represents frequency

DeCanio 2017, R. Soc. Interface



Two-link Model O Clamped end

A Joined links

B Free end

l Link Length

k Torsional Spring 
Strength

𝜃1 Degree of freedom 
about O

𝜃2 Degree of freedom 
about A

𝜞 Tangential Follower 
Force



Variables of Two-link Model
Locations of points A and B:

Velocities of points A and B:

Follower Force:
               where           is the magnitude and                              is the unit tangent vector that joins 
points A and B.

Torsional Springs Restoring Moments:
                     at point O
                               at point A



With this set up in mind, we
● Derived equations of motion for the two-link filament 

in both viscous (DeCanio) and viscoelastic fluids
● Numerically simulated the nonlinear systems
● Ran linear stability analysis and
● Tried to find the expected value of the frequency of 

filament oscillations in the viscoelastic case
To find “How does viscoelasticity affect the oscillations of 
a two-link model?”



Viscous Equations of Motion with Nondimensionalization
Applied the principle of virtual work:

Fluid viscous forces = drag forces:         ,       .

Nondimensional scaling:        ,    .

Separating the arbitrary        and   yielded the nonlinear system



Viscous model solved in Matlab using ode45

Σ=2 Σ=2.9 Σ=3.5

https://docs.google.com/file/d/1muQJJjS5FvngOgT4o075TwV9h8bNS_G0/preview
https://docs.google.com/file/d/1wiUtb1ehosZ3DafVRbRLS8gWOPNgJ7W7/preview
https://docs.google.com/file/d/1UmXqVgxv_rdLmxNKdcCQCN_RvbX45iWp/preview


Linearization for viscous case

Linearized the system of equations about    .  

Applied the Taylor Series for  and     for when x is small:

= 0 because x is small



Linearized System of Equations:

1.

2.



Linear Stability Analysis

Applied solution                    :

Separating the equations by     and     yielded the matrix system

With the determinant zero, the solution for 𝜔 was



Stability Analysis results

1. Σ ≤ 2  ⇒  ω
士

< 0 ⇒ system is stable 
2. 2 < Σ < 3 ⇒  Re(ω

士
)<0 and Im(ω

士
)≠0 

⇒ decaying oscillations
3. Σ=3 ⇒ Re(ω

士
)=0 and Im(ω

士
)≠0 ⇒ 

system is stable with periodic 
oscillations

4. 3 < Σ < 4 ⇒ Re(ω
士

)>0 and Im(ω
士

)≠0 
⇒ exponentially growing oscillations

5. Σ ≥ 4 ⇒ ω
士

> 0 ⇒ system is unstable



Σ=2 Σ=2.9

Σ=3 Σ=3.5



What is Hopf Bifurcation?
A textbook definition:                                                                                          

“The appearance or the disappearance of a periodic orbit through a local change 
in the stability properties of a steady point.”

Linear Stability

- Exponential decay stops and changes to exponential growth, and the oscillations 
change from stable to unstable when Re(⍵±) = 0, leaving constant oscillations of 

frequency     . 

Hopf bifurcation : definition of Hopf bifurcation and synonyms of Hopf bifurcation (English) (sensagent.com) 

http://dictionary.sensagent.com/Hopf%20bifurcation/en-en/


Hopf Bifurcation: Viscous
Linear Analysis Solution: 

Real Part:

So, 



Viscoelastic Fluid Properties

● Possess both fluid and solid properties
○ Viscosity- fluid property; measure of resistance to flow
○ Elasticity-  solid property; ability to resume original shape after deformation

● Stress (σ) and is a function of strain (ε) and strain rate
○



Maxwell Model

σ

ε
strain

stress

E

elastic 
modulus

viscosityLinear arrangement of spring and dashpot
● Stress is equal throughout

○ σ = σs= σd
● Strain is additive

○ ε = εs + εd



Changing Drag Force
Maxwell Model:

     : the fluid relaxation time,  

Viscoelastic forces:         →           ,    →

                       

Evolution of drag forces overtime:



Viscoelastic equations of Motion
Principle of virtual work and fluid viscous forces:

Initial nonlinear system:

      



Linearization

Linearized about                           with Taylor Series    and                     

                                                              



Nondimensionalization
Scaling substitutions: .       
. 

 



Divided equations 1 and 2 by k𝛼, 3 and 4 by     . 



Scaling Factors
Scaling factors:     , ,  ,    

Nondimensionalized linear system:



Viscoelastic Linear Stability Analysis
Assumed solutions                     and   . 



Separating the equations by      ,      ,         , and          yielded the matrix system

With the determinant zero, the solution for 𝜔 was



Hopf Bifurcation: Linear Relationship between Σ and Λ
Viscoelastic Linear Result:

Real Part: 

Boundaries:



Results of stability analysis are consistent with linear 
relationship

Λ=0 Λ=0.5 Λ=0.9



Predicting Frequency along Bifurcation Points
Substituting           in yielded

 

This predicts frequency of oscillations 
at the hopf bifurcation points with 
varying Λ: 

*Graph for ⍵+



Model of Nonlinear System
System of DAEs- 4 DEs and 2 mechanical constraint equations



What is a DAE?

Differential Algebraic System of Equations:

● Type of differential equations where one or more derivatives of dependent 
variables are not present in the equations. 

● Variables are algebraic if they do not have their derivative in the equations, 
and the presence of algebraic variables means that you cannot translate the 
equations in the explicit form y′=f(t,y)

Matlab ODE Solver ODE45 could not solve our nonlinear equations. 

DAE solvers: ODE15i and ODE15s.  

Solve Differential Algebraic Equations (DAEs) - MATLAB & Simulink (mathworks.com)

https://www.mathworks.com/help/matlab/math/solve-differential-algebraic-equations-daes.html


Mass matrix for nonlinear system

Need M such that My’=F(y, T)



Viscoelastic model solved in Matlab using ode15s
When Λ=0, we recover viscous model:

Σ=2 Σ=2.9
Σ=3.3

Shift in pattern of oscillations for higher Λ, Λ=0.5:

Σ=2 Σ=2.9
Σ=3.3



Fluid elasticity changes oscillation pattern for fixed Σ

Σ=3.3:

Λ=0 Λ=0.5 Λ=1



Fluid elasticity changes oscillation pattern for fixed Σ

Λ=0.5

Σ=3.3:

Λ=0.9Λ=0

https://docs.google.com/file/d/1fPyNOWSS5KKCJQxfbtaGxn-I2dabhY2b/preview
https://docs.google.com/file/d/13-57KKGSu6qlLOgq8IiMu2JK9nWk5lBA/preview
https://docs.google.com/file/d/1DYso9Vo9cis5tD9aj5sZVLLBcFmdg22m/preview


Issues with Maxwell Model

- Model breaks down for large Σ values
- We jump straight from a purely viscous to purely viscoelastic 

fluid
- We want a way to smoothly transition between the two

… So we considered a new model!



Oldroyd-B Viscoelastic Model

Complex fluids have a total stress comprised of the fluid and polymer parts

With the Maxwell model, we considered just the viscosity of the polymers.  

With this model, we consider both fluid and polymer viscosity:

*Similar changes for     and   .  



Oldroyd-B Equations of Motion
Principle of virtual work and fluid viscous forces:

Initial nonlinear system:



Linearization

Assuming  ,       , and             ;     



Nondimensionalization

Scaling factors:      →



Linear System of Equations
Substitutions:

𝛽 = 0: No polymer viscosity → Viscous model

𝛽 = 1: Only polymer viscosity → Maxwell model
       



Nonlinear System of Equations



Linear Analysis

Same solutions            and .    



Separating the equations by     ,     ,        , and        yielded the matrix system

The solutions for ⍵ are a bit too lengthy to use individually...



… So we solved it numerically!

β=
0 

(v
is

co
us

 m
od

el
)

β=0.99 (Maxwell model)

β=
0.

67

unstablestable Contours of frequency overlaid with bifurcation curve for β=0.67



Two bifurcations along Σ=3.25 for β=0.67  

Λ=0.4

Λ=2.65



Two bifurcations along Σ=3.25 

Λ=0.25 Λ=3Λ=1



Frequency and amplitude change as we vary Λ

Λ=0.25

Λ=3
0.4 2.65

Linear theory 
predicts stability- 
oscillations die out 
over time



Frequency changes as we vary Λ

Λ=0.25 Λ=3

https://docs.google.com/file/d/1c3SvSxi3Gs5gtBb4hlyMBlVcp5Awl0Ap/preview
https://docs.google.com/file/d/1bANz6ZpF5MpmREuM_moZ53ZCXuu2Ftu_/preview


Conclusion-how does viscoelasticity affect flagellar motion?

- Maxwell model
- Increased fluid viscoelasticity damps oscillations

- Oldroyd B Model
- Two bifurcation points for viscoelastic fluids
- Increasing viscoelasticity decreases oscillation amplitude, increases 

frequency 
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