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The classical repetition code

A bit being transmitted has some probability p of flipping. To
increase the reliability of this channel, we perform the following
encoding: 0 → 000, 1 → 111, and we instruct the receiver to
interpret the message to be the state they see most frequently.

For an encoded state to be interpreted incorrectly, it must have
suffered at least two bit flips. It turns out that if p < 1/2, the
channel is more reliable if this encoding is used as opposed to
sending the bit with no encoding.

By introducing redundancy, we have made transmission more
reliable - this will be a common theme.
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Hamming space

A Hamming space is the set of all words of fixed length made from
letters of some alphabet. A code is a subset of this space. For
instance, the repetition code is the set {000, 111}, which is a
subset - in fact, a subspace - of (Z/2)3.

The Hamming distance is defined to be the number of places at
which two words differ. The distance of a code is defined as the
smallest distance between any two distinct codewords,

d = inf
x ,y∈C

d(x , y) with x ̸= y .

A code with distance d can correct at most
⌊
d−1
2

⌋
errors.
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This is the Hamming space (Z/2)3, with the code {000, 111}
outlined in yellow. The red and blue triangles are the balls of
radius 1, with respect to the Hamming metric, with these
codewords at their centers. Note two things: we must move three
times to get from one codeword to the other (the distance of the
code is 3), and we cannot correct errors which take us outside of
the error ball (the code can correct up to 1 error). This image
suggests an analogy between error correction and sphere packing. 4/21
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Qubit states

Regarding Dirac notation, |v⟩ denotes a vector, just like v or v;
⟨v | := (|v⟩)†.

A qubit is the fundamental unit of quantum information; it is the
quantum analogue of a bit. We represent the state of a qubit as a
vector |ψ⟩ = a|0⟩+ b|1⟩ in a two-dimensional complex Hilbert
space, and require that |a|2 + |b|2 = 1.

We can identify the basis elements |0⟩ and |1⟩ with
[
1
0

]
and

[
0
1

]
,

respectively; we can then think of |ψ⟩ as
[
a
b

]
.
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Errors as operators
If qubit states are two-dimensional vectors with complex entries,
then qubit states are changed, or acted on, by operators in the
space of 2× 2 complex matrices. The Pauli matrices are a set of
Hermitian, unitary, and involutory 2× 2 complex matrices which
form a basis for M2,2(C).

I =

[
1 0
0 1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]

The action of each Pauli corresponds to an error on one qubit. For
some |ψ⟩ = a|0⟩+ b|1⟩,

I |ψ⟩ = |ψ⟩
X |ψ⟩ = a|1⟩+ b|0⟩
Y |ψ⟩ = i(a|1⟩ − b|0⟩)
Z |ψ⟩ = a|0⟩ − b|1⟩.
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Measurement
There exists a measurement operation which collapses the qubit
state |ψ⟩ = a|0⟩+ b|1⟩ into the state |0⟩ with probability |a|2, or
into the state |1⟩ with probability |b|2.

Let W be a subspace of a Hilbert space spanned by an orthonormal
basis |1⟩, . . . , |n⟩. The projector P into W is the operator given by

P :=
n∑

i=1

|i⟩⟨i |.

Observables are Hermitian operators whose eigenvalues correspond
to measurement outcomes. An observable M has a spectral
decomposition,

M =
∑
i

λiPλi
.

Measurements defined by observables are called projective
measurements.
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Multi-qubit systems

Given n qubits with individual states |ψ1⟩, . . . , |ψn⟩, the state of
the total system of these n qubits is given by |ψ1⟩ ⊗ · · · ⊗ |ψn⟩.
However, not all quantum systems can be written in this way (as
simple tensors). Entangled states, such as one of the Bell states

|00⟩+ |11⟩√
2

,

are those which cannot be written as a tensor product of
subsystems. Entanglement plays a key role in quantum error
correction. (Notation: |00⟩ = |0⟩ ⊗ |0⟩.)

In a similar way, operators acting on multiple qubits are equal to
the tensor product of the operators acting on individual qubits. For
example, the bit flip on the second of three qubits is equal to
I ⊗ X ⊗ I , which may be abbreviated as X2.
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Barriers to QEC

1. Measuring a quantum state changes it.

2. We cannot replicate quantum information. The no-cloning
theorem states that there is no unitary transformation which will
take us from |ψ⟩ ⊗ |e⟩ to |ψ⟩ ⊗ |ψ⟩.

3. Besides an error analogous to a classical bit flip, qubits can also
suffer phase flips or continuous errors such as rotation by an
arbitrary degree.
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The {|0⟩, |1⟩} repetition code
Suppose a qubit |ψ⟩ = a|0⟩+ b|1⟩ is sent across a channel whose
effect is to apply the Pauli X , or bit flip, matrix with some
probability. To mitigate the effects of this noise, encode |ψ⟩ as
a|000⟩+ b|111⟩. Then the code is the subspace spanned by
{|000⟩, |111⟩}, subject to the constraint on the norms of a and b.

The error detection strategy is to compare the first and second
qubits, then compare the second and third qubits, and use the four
distinct pairs of outcomes to determine which error occurred.

We do this by measuring the observables Z1Z2 and Z2Z3, for a
combination of two reasons:

1. Z has eigenvalue 1 for |0⟩ and eigenvalue −1 for |1⟩.

2. If Ax = λx and By = µy , then (A⊗ B)(x ⊗ y) = λµ(x ⊗ y).
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The {|0⟩, |1⟩} repetition code

Therefore |00⟩ and |11⟩ have eigenvalue 1 for ZZ , while |01⟩ and
|10⟩ have eigenvalue −1 for these operators. To see an example of
how these measurements help detect error, suppose the encoded
state suffers a bit flip on the second qubit. Let
|ψ′⟩ = a|010⟩+ b|101⟩. Then,

Z1Z2|ψ′⟩ = aZ1Z2|010⟩+ bZ1Z2|101⟩
= −a|010⟩ − b|101⟩
= −|ψ′⟩.

Therefore |ψ′⟩ is a −1 eigenvector of Z1Z2. It turns out that this is
the case for Z2Z3 as well. Then we measure the pair (−1,−1),
indicating that the first and second qubits are different, and the
second and third qubits are different. Assuming at most one error,
the error in |ψ′⟩ must have been to the second qubit.
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The {|+⟩, |−⟩} repetition code

Suppose a qubit |ψ⟩ = a|0⟩+ b|1⟩ is sent across a channel whose
effect is to apply the Pauli Z , or phase flip, matrix with some
probability. To mitigate the effects of this noise, encode |ψ⟩ as
a|+ + +⟩+ b|− − −⟩, where the {|+⟩, |−⟩} basis vectors are
defined as

|±⟩ = |0⟩ ± |1⟩√
2

.

We can move between the {|0⟩, |1⟩} and {|+⟩, |−⟩} bases easily
via the Hadamard gate H, which has the following effects:

H(a|0⟩+ b|1⟩) = a|+⟩+ b|−⟩
X (a|+⟩+ b|−⟩) = a|+⟩ − b|−⟩
Z (a|+⟩+ b|−⟩) = a|−⟩+ b|+⟩.

H exchanges the roles of X and Z .
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The {|+⟩, |−⟩} repetition code

Error detection for this code is done nearly exactly as it was done
for the {|0⟩, |1⟩} code, except we instead measure the observables
X1X2 and X2X3. We have chosen our code to lie in the +1
eigenspace of two observables whose measurement does not affect
the information we are transmitting, with the rationale that
measuring a state to be outside of this eigenspace corresponds to
an error.

As with the prior code, each pair of measurements we observe
corresponds to a distinct error. For instance, a phase flip on the
first qubit results in the state a|− + +⟩+ b|+ − −⟩, which is a
−1 eigenvector of X1X2 and a +1 eigenvector of X2X3.
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The Shor code

The Shor code encodes a qubit state |ψ⟩ = a|0⟩+ b|1⟩ into the
nine-qubit state given by the codewords below:

|0⟩ → (|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)
2
√
2

|1⟩ → (|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩)
2
√
2

.

This is done by combining the above repetition codes. We perform
two encodings:

1. |0⟩ → |+ + +⟩, |1⟩ → |− − −⟩.

2. |+⟩ → (|000⟩+ |111⟩)
√
2, |−⟩ → (|000⟩ − |111⟩)

√
2.
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The Shor code
|q1⟩ |q2⟩ |q3⟩ |q4⟩ |q5⟩ |q6⟩ |q7⟩ |q8⟩ |q9⟩

M1 Z Z

M2 Z Z

M3 Z Z

M4 Z Z

M5 Z Z

M6 Z Z

M7 X X X X X X

M8 X X X X X X

The eight measurements above, with I s and tensor products
omitted for readability, are performed to detect error and indicate
which recovery operation must be performed. 15/21
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Discretizing error
Theorem - If a code corrects errors E and F , then it corrects
aE + bF .

Recall that the Pauli matrices span M2,2(C), and that an error on
a qubit can be modeled as a 2× 2 complex matrix. We have
shown that X ,Y , and Z errors on one qubit can each be corrected
by the Shor code. By the above theorem, the Shor code can
correct an arbitrary error on one qubit.

To provide a bit more detail, suppose an error E can be written as
the linear combination aI + bX + cY + dZ . Then, the
(unnormalized) qubit state E |ψ⟩ can be written as the
superposition a|ψ⟩+ bX |ψ⟩+ cY |ψ⟩+ dZ |ψ⟩. Measuring which
error occurred collapses this superposition into one of the those
four states, with the result being a Pauli error that we know how
to correct.
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Barriers to QEC (revisited)

1. Rather than measuring corrupted states directly, we instead
measure error indirectly by comparing the corrupted state’s qubits
through projective measurements.

2. Since we cannot replicate quantum states, we entangle the
qubit we are transmitting with other qubits to make a
higher-dimensional state that is more resilient to noise.

3. We can correct phase flips very similarly to how we correct bit
flips, and given that a code can correct both, it can correct
arbitrary errors.
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The Pauli group

Define the Pauli group on n qubits, Pn, to be the set of n-fold
tensor products of Pauli matrices, along with the scalars ±1, ±i .
For instance, I ⊗ X ⊗ Z ∈ P3.

Any two operators in the Pauli group either commute or
anticommute. In the one-qubit case, commutation is a bit trivial;
for multi-qubit systems it can be more interesting.

The weight of some M ∈ Pn is defined to be the number of qubits
at which M acts as a non-identity operator.
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The stabilizer group

The stabilizer of a code is the group consisting of all Pauli
operators M with the property that M|ψ⟩ = |ψ⟩ ∀|ψ⟩ ∈ C . The
stabilizer is abelian. This relates to the fact that commuting
operators have simultaneous eigenvectors; we want operators
which share the codewords as eigenvectors, therefore they should
commute.

Given any abelian group S of Pauli operators, we can define a code
to be the intersection of the +1 eigenspaces of each M ∈ S :

C = {|ψ⟩ such that M|ψ⟩ = |ψ⟩ ∀M ∈ S}.

For a stabilizer code with r generators and n-qubit codewords, the
code must have dimension 2n−r .
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Detecting errors
Suppose E commutes with some M ∈ S , so that
ME |ψ⟩ = EM|ψ⟩ = E |ψ⟩. E |ψ⟩ is a +1 eigenvector of M, so E is
not detected as an error. Conversely, suppose E and M
anticommute so that E |ψ⟩ is a −1 eigenvector of M. Then E is
detected as an error.

Let N(S) be the set of operators N which commute with all
M ∈ S . A stabilizer code detects errors outside of N(S) \ S
because errors outside of N(S) anticommute with stabilizers and
are detected by measuring eigenvalues, while errors in S act like
the identity by definition - they are trivial errors.

Errors can be classified as detectable (not in N(S) \ S),
undetectable (in N(S)), or trivial (in S). Define the weight of a
code to be the infimum of the set of weights of the elements of
N(S) \ S . The weight of a code is the weight of the smallest error
it cannot detect.
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Correcting errors
Correcting error requires us to know exactly which operator had its
eigenvalues change, so that we can apply the proper recovery
procedure. We do this by measuring the eigenvalues of every
operator in the stabilizer and noting that they can change
differently due to different errors. For instance, an error that
commutes with the first generator but not the second will give
eigenvalues of +1 and −1; these will be flipped for the opposite
commutation.

It can be shown that E and F have the same error syndrome
(eigenvalue measurements) iff E †F ∈ N(S). Then if E †F ̸∈ N(S),
E and F may be distinguished by their different error syndromes.
Meanwhile, if E †F ∈ S , then E |ψ⟩ = F |ψ⟩, and we cannot
distinguish between the two errors but don’t need to because they
do the same thing to the codewords. Then a stabilizer code
corrects errors for which E †F ̸∈ N(S) \ S for all possible pairs of
errors (E ,S).
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