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This note is intended to provide an introduction to quantum error correction

accessible to somebody comfortable with linear algebra and the notion of a group.

We describe how quantum information is represented, what kinds of errors may

affect it, and give a general procedure for quantum error correction. We then pro-

vide examples of quantum error correcting codes, eventually arriving at the Shor

code. We finish by introducing the stabilizer formalism for quantum error correc-

tion.

1. Preliminaries

In this section, we explain the bra-ket, or Dirac, notation commonly used
when discussing quantum mechanics and related areas. We also discuss a
few items from linear algebra that the reader is not assumed to be familiar
with, such as the tensor product.

When using bra-ket notation, the vector v is represented by |v⟩. We
use ⟨v| to represent the Hermitian adjoint |v⟩† of |v⟩. The inner product of
two vectors |v⟩ and |u⟩ is given by ⟨v|u⟩. Given a matrix A, the inner prod-
uct between |v⟩ and A|u⟩ is given by ⟨v|A|u⟩. Given a Hilbert space H, let
W ⊆ H be a subspace spanned by an orthonormal basis |1⟩, . . . , |n⟩. The
projector P into W is the operator given by

P =
n∑

i=1

|i⟩⟨i|.

We now explain the tensor product operation informally. Given an m × n
matrix A and a p × q matrix B, the tensor product A ⊗ B is the pm × qn
block matrix:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
We may take tensor products of vector spaces. The tensor product V ⊗W of
two vector spaces V and W with bases BV and BW , respectively, has as its
basis the set

{|v⟩ ⊗ |w⟩ : |v⟩ ∈ BV , |w⟩ ∈ BW}.
When discussing how quantum errors are detected, we will use the following
fact often:

If Ax = λx and By = µy, then (A⊗B)(x⊗ y) = λµ(x⊗ y). (1)
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2. Quantum error correction

While classical information is carried by strings of bits, we think of quan-
tum information as being given by the state of a qubit, or quantum bit. We
use the common bra-ket notation |v⟩ to represent the vector v. The state of
a qubit is given by the vector

|ψ⟩ = a|0⟩+ b|1⟩ ∈ H ∼= C2

where |0⟩ = e1 and |1⟩ = e2, a, b ∈ C, and |a|2 + |b|2 = 1. The complex
numbers a and b are called amplitudes. The state |ψ⟩ is said to be in a su-
perposition of the states |0⟩ and |1⟩. The amplitudes a and b are said to dif-
fer by a relative phase if there is a real θ such that a = eiθb. More generally,
the state of a system of n qubits is in a superposition of the 2n bitstrings of
length n. Given n qubit states |ψ1⟩, . . . , |ψn⟩, the state of the total system of
these qubits is given by the simple tensor |ψ1⟩ ⊗ · · · ⊗ |ψn⟩. For brevity, we
may omit tensor product symbols, as in |00⟩ = |0⟩ ⊗ |0⟩. Many multi-qubit
quantum states relevant to quantum error correction cannot be written as
simple tensors; these are called entangled states. A procedure for preparing
an entangled state is given later in this section. An example of an entangled
state is the Bell state

|00⟩+ |11⟩√
2

.

Qubit states are acted on by operators in the space of 2 × 2 complex matri-
ces. The Pauli matrices I,X, Y, Z are a set of Hermitian, unitary, and invo-
lutory matrices which form a basis for M2,2(C).

I =

[
1 0
0 1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
The action of each Pauli matrix corresponds to an error on one qubit. For
some |ψ⟩ = a|0⟩+ b|1⟩,

I|ψ⟩ = |ψ⟩
X|ψ⟩ = a|1⟩+ b|0⟩
Y |ψ⟩ = i(a|1⟩ − b|0⟩)
Z|ψ⟩ = a|0⟩ − b|1⟩.

Because of their effects, the Pauli X and Z gates are often called the bit flip
and phase flip gates, respectively. Operators acting on multiple qubits are
given by taking tensor products of the Pauli matrices. For example,

(X ⊗ Y ⊗ Z)(|ψ1⟩ ⊗ |ψ2⟩ ⊗ |ψ3⟩) = X|ψ1⟩ ⊗ Y |ψ2⟩ ⊗ Z|ψ3⟩.

2



A notion central to quantum theory is measurement. Given a qubit state
|ψ⟩ = a|0⟩ + b|1⟩, there exists a measurement operation which takes |ψ⟩ to
|0⟩ with probability |a|2, and to |1⟩ with probability |b|2. A projective mea-
surement is associated with an observable, M , a Hermitian operator on the
state space of the system being observed. The observable has a spectral de-
composition,

M =
∑
λ

λPλ,

where Pλ is the projector into the eigenspace of M with eigenvalue λ. The
possible outcomes of the measurement are associated with the eigenvalues
λ. Upon measuring the state |ψ⟩, the probability of observing the outcome
associated with λ is given by

p(λ) = ⟨ψ|Pλ|ψ⟩.

Given that outcome λ occurred, the state of the quantum system immedi-
ately after the measurement is

Pλ|ψ⟩√
p(λ)

.

In what follows, we invoke the notion of measurement in a particular way:
given a state |ψ⟩ and an observable M , we say “measure M” to mean “de-
termine the eigenvalue of |ψ⟩ with respect to M”.

We are now ready to discuss quantum codes. The need for quantum er-
ror correction is straightforward: quantum information, in storage or trans-
mission, may suffer errors due to noise in its environment. We would like
some procedure to correct these errors. Given a state |ψ⟩, the general proce-
dure goes as follows:

1. Encode |ψ⟩ as a state that is more robust to error. This involves in-
troducing redundancy in the sense that the encoded state will be com-
posed of more qubits than |ψ⟩. When working with classical informa-
tion, it is possible to replicate strings of bits and use a majority voting
procedure to correct error. By the no-cloning theorem, it is not pos-
sible to replicate an arbitrary quantum state. One way to introduce
redundancy is to encode |ψ⟩ as an entangled state. For example, to en-
code |1⟩ as |111⟩, we take the tensor product |10⟩ and apply to it the
CNOT gate, which flips the second qubit only if the first is |1⟩. This
yields the state |11⟩. We then take the tensor product |110⟩ and ap-
ply the CNOT gate to the first and third qubits, giving the state |111⟩.
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The encoded state is called a codeword, and the set of codewords com-
prises a code.

2. We allow the encoded state to experience error. We then perform mea-
surements on the qubits of the corrupted state to determine which er-
ror occurred.

3. We apply a recovery (error correction) procedure informed by the re-
sult of the previous step.

Before discussing specific codes, we state an important point: If a code
can detect or correct some set {Ei} of errors, it can also detect or correct
linear combinations of the Ei. In particular, a code capable of correcting the
Pauli errors X, Y , and Z on a single qubit is capable of correcting arbitrary
errors on that qubit.

3. Three quantum error correcting codes

Suppose we wish to send the qubit state |ψ⟩ = a|0⟩ + b|1⟩ across a noisy
channel which will apply the Pauli X gate with probability p while leaving
|ψ⟩ unchanged with probability 1 − p. Following the format given above, we
can perform the following procedure to correct this error:

1. Encode |ψ⟩ as a|000⟩ + b|111⟩. Then the code is the space spanned by
{|000⟩, |111⟩}, subject to the constraints on the norms of a and b. We
may call this code the |0⟩, |1⟩-repetition code; it is often called the bit
flip code as well.

2. We allow the codeword to experience error by sending each of the
three qubits through an independent channel. To detect error, we mea-
sure the observables Z⊗Z⊗ I and I⊗Z⊗Z. By (1), both of these ob-
servables have eigenvalues ±1, so there are four pairs of measurements
we may obtain. In particular, the observable Z ⊗ Z has eigenvalue +1
for the states |00⟩ and |11⟩, and eigenvalue −1 for the states |01⟩ and
|10⟩. These measurements amount to a comparison of the first and sec-
ond qubits, and the second and third qubits, of the corrupted state,
without revealing the amplitudes a and b.

3. We use the measurements obtained in the previous step to tell us what
procedure to use to recover the initial state. For example, suppose that
the measurement result for (Z ⊗ Z ⊗ I, I ⊗ Z ⊗ Z) was (−1,−1). Then
the first and second qubits differ, and the second and third qubits
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differ. Assuming at most one error, it follows that the second qubit
flipped. We may correct this by flipping the second qubit again, via an
application of the operator I ⊗X ⊗ I.

Before describing a quantum code capable of correcting phase flip errors,
we first consider a certain relationship between the X and Z gates. Define
the Hadamard gate,

H =
1√
2

[
1 1
1 −1

]
.

We have that HXH = Z. The Z matrix has |0⟩ and |1⟩ as its +1 and −1
eigenvectors, respectively. Define the vectors

|±⟩ = |0⟩ ± |1⟩√
2

.

We have that the X matrix has |+⟩ and |−⟩ as its +1 and −1 eigenvalues,
respectively. Also,

H|0⟩ = |+⟩ and H|1⟩ = |−⟩.

Then the Hadamard matrix allows us to move between the |0⟩, |1⟩ and |+⟩, |−⟩
bases, while interchanging the effects of the X and Z matrices.

We now consider a situation which does not have a direct classical ana-
logue. Suppose we wish to send the qubit state |ψ⟩ across a noisy channel
which will apply the Pauli Z gate with probability p while leaving |ψ⟩ un-
changed with probability 1 − p. We may perform the following procedure to
correct this error:

1. We perform a two-step encoding. First, we map |ψ⟩ to a|000⟩ + b|111⟩,
as in the |0⟩, |1⟩-repetition code. We then apply the Hadamard gate to
each qubit, giving the codeword a|+++⟩ + b|−−−⟩. Then the code
is the space spanned by {|+++⟩, |−−−⟩}, subject to the constraint
on the norms of a and b. We may call this code the |+⟩, |−⟩-repetition
code; it is often called the phase flip code as well.

2. We allow the codeword to experience error by sending each of the
three qubits through an independent channel. Let

H⊗n = H ⊗ · · · ⊗H︸ ︷︷ ︸
n times
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Then, to detect error, we may measure the observables

H⊗3(Z ⊗ Z ⊗ I)H⊗3 = X ⊗X ⊗ I

and
H⊗3(I ⊗ Z ⊗ Z)H⊗3 = I ⊗X ⊗X.

These measurements perform a task analogous to what was done in
the error detection step associated with the |0⟩, |1⟩-repetition code. By
(1), the observable X ⊗ X has eigenvalue +1 for | + +⟩ and | − −⟩,
and eigenvalue −1 for |+−⟩ and | −+⟩. Then measuring the given ob-
servables amounts to comparing the sign of the first and second qubits,
and of the second and third qubits. As with the previous code, these
comparisons are performed without revealing information about a or b.

3. We use the measurements obtained in the previous step to tell us what
procedure to use to recover the initial state. For example, suppose that
the measurement result for (X⊗X⊗I, I⊗X⊗X) is (1,−1). Then the
first and second qubits are the same, while the second and third qubits
are different. Assuming at most one error, it follows that the phase of
the third qubit was flipped. We may correct this by flipping the phase
of the third qubit again, via an application of the operator I ⊗ I ⊗ Z.

In summary, the |+⟩, |−⟩-repetition code is essentially the |1⟩, |0⟩-repetition
code under a change of basis. By combining both codes in what is known as
the Shor code, we are able to correct an arbitrary error on one qubit. The
procedure for using the Shor code is as follows:

1. As in the |+⟩, |−⟩-repetition code, we encode |ψ⟩ = a|0⟩ + b|1⟩ as
a|+++⟩ + b|−−−⟩. We then encode each of these three qubits as in
the |0⟩, |1⟩-repetition code: |+⟩ is encoded as (|000⟩+ |111⟩)

√
2 and |−⟩

is encoded as (|000⟩ − |111⟩)
√
2. The result is a nine qubit code, with

codewords given by:

|0⟩ → (|000⟩+ |111⟩)⊗3

2
√
2

|1⟩ → (|000⟩ − |111⟩)⊗3

2
√
2

.

2. We allow the codeword to experience error by sending each of the nine
qubits through an independent channel. The Shor code is able to pro-
tect against bit and phase flip errors by a simple extension of the pro-
cedures associated with the previously discussed codes. We may detect
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a bit flip error on, for example, the fifth qubit, by measuring

I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I

and
I ⊗ I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I.

For brevity, we adopt a notation whereby Is and tensor product sym-
bols are omitted, and a subscript is used to indicate to which qubit
an operator is being applied. The above operators are then written as
Z4Z5 and Z5Z6. By the same argument as for the |0⟩, |1⟩-repetition
code, we use the pair of measurement outcomes to determine whether
the fifth qubit flipped.

We detect phase flip errors in a similar way, although we perform
measurements on blocks of three qubits rather than on the nine indi-
vidual qubits. Suppose we wish to detect a phase flip error on one of
the first three qubits. Such an error flips the sign of the first block of
qubits, changing |000⟩ ± |111⟩ to |000⟩ ∓ |111⟩. Therefore to detect
this error it suffices to compare the sign of the first and second blocks
of qubits, and the sign of the second and third blocks. This is done
by measuring the observables X1X2X3X4X5X6 and X4X5X6X7X8X9.
In general, we may detect bit and phase flips on any one of the nine
qubits by measuring the set of observables:

{Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9,

X1X2X3X4X5X6, X4X5X6X7X8X9}.

3. Assuming at most one qubit was affected by bit and/or phase flips, we
may correct these errors in the ways described for the previous codes.
A bit flip error on the ith qubit is corrected by applying the operator
Xi, and a phase flip error on one qubit in the ith block is corrected by
applying the operator Z3i−2Z3i−1Z3i.

Notice that the procedures for detecting and correcting bit and phase
flip errors are distinct. It follows that a simultaneous bit and phase flip error
on the same qubit may be corrected by the procedure given above. Further-
more, this procedure corrects an arbitrary error. Let

E = a0I + a1X + a2Z + a3XZ

be an arbitrary error affecting one qubit of the codeword |ψ⟩ (note that Y =
iXZ). Then the unnormalized corrupted state E|ψ⟩ is a superposition of the
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four terms
|ψ⟩, X|ψ⟩, Z|ψ⟩, XZ|ψ⟩.

Measuring which error occurred collapses this superposition into one of the
four states comprising it. Since we may recover |ψ⟩ from each of these four
states, it follows that the Shor code can correct an arbitrary error on one
qubit.

We now introduce a more general framework for specifying quantum er-
ror correcting codes.

4. The stabilizer formalism

The three codes in the previous section had a commonality: they were
given by the mutual +1-eigenspaces of the operators we measured to detect
error. The central idea of the stabilizer formalism is that there are many
quantum states which are more easily described in terms of the operators
that stabilize them — that is, the operators for which they are a +1-eigenstate.
The stabilizer formalism relies on group theory; the group of interest to us is
the Pauli group,

Gn =

{
ik

n⊗
j=1

Mj : k ∈ {0, 1, 2, 3},Mj ∈ {I,X, Y, Z}

}

on n qubits. It is evident that Gn consists of all n-fold tensor products of
the Pauli matrices, with the multiplicative factors ±1 and ±i. Any two ele-
ments of Gn either commute or anticommute with eachother.

The stabilizer S of a code C is the subgroup of Gn consisting of all Pauli
operators M with the property that M |ψ⟩ = |ψ⟩ for all |ψ⟩ ∈ C. In order
for C to be nontrivial, we need −I ̸∈ S, as −I|ψ⟩ = |ψ⟩ is satisfied only
by |ψ⟩ = 0. This further implies ±iI ̸∈ S. Additionally, we need S to be
abelian. To see why this is necessary, suppose that M,N ∈ S anticommute.
We will deduce a contradiction. We have −NM =MN by assumption, so

−|ψ⟩ = −NM |ψ⟩ =MN |ψ⟩ = |ψ⟩

where the first and last equalities are due to the fact that M,N ∈ S. Then
|ψ⟩ = −|ψ⟩, so |ψ⟩ = 0. Then S stabilizes a trivial code, giving a contradic-
tion.
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It is convenient to specify a stabilizer in terms of its generators. As an
example, the |0⟩, |1⟩-repetition code is stabilized by the group

S = {I, Z1Z2, Z1Z3, Z2Z3},

as the intersection of the +1-eigenspaces of the elements of S is the set spanned
by {|000⟩, |111⟩}. However, we have that Z1Z3 = (Z1Z2)(Z2Z3), and I =
(Z1Z2)

2. Then any element of S can be written as a product of powers of
Z1Z2 and Z2Z3, so we write S = ⟨Z1Z2, Z2Z3⟩.

We now discuss the errors that a stabilizer code may detect and correct.
Let C be stabilized by S, and suppose E commutes with some M ∈ S, so
that ME|ψ⟩ = EM |ψ⟩ = E|ψ⟩ for |ψ⟩ ∈ C. Then E|ψ⟩ is a +1 eigenstate of
M , so E is not detected as an error. Conversely, suppose E and M anticom-
mute so that E|ψ⟩ is a −1 eigenstate of M . Then E is detected as an error.
Let N(S) be the set of operators which commute with all M ∈ S. Then C
detects errors outside of N(S) \ S because errors outside of N(S) anticom-
mute with M ∈ S and are detected by measuring observables, while errors in
S act like the identity by definition and are thus trivial errors. Then errors
may be classified as

• detectable (not in N(S) \ S),

• undetectable (in N(S)), or

• trivial (in S).

Correcting an error requires us to know exactly which observable(s) was
(were) measured to have a −1 eigenvalue for the corrupted state. We learn
this by measuring the eigenvalues of every generator for the stabilizer, as
described in the previous section. It can be shown that E and F have the
same eigenvalue measurements, and therefore correspond to the same error,
if and only if E†F ∈ N(S). Then if E†F ̸∈ N(S), E and F may be dis-
tinguished by measuring eigenvalues. Meanwhile, if E†F ∈ S then E|ψ⟩ =
F |ψ⟩, and we cannot distinguish between the two errors. However, we do
not need to as they have the same effect on a given codeword. Then a stabi-
lizer code corrects all pairs of errors (E,F ) such that E†F ̸∈ N(S) \ S.
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