
The Sum and Product Game: Longest Chains and
Other Counts

Mariam Abu-Adas

December 2022

Abstract

In this project we work with the graph of the sum and product game and aim to
find countings of various elements of the graph. We count the number of sum nodes
and the distribution of their degrees. We also estimate the number of product nodes
and use a Markov chain to estimates the distribution of their degrees. We use these
countings and estimates to develop a probability proof on the parity of chain lengths.

1 Introduction

The Sum and Product Puzzle was originally published in 1969 by Hans Freudenthal and
was popularized in 1979 by Martin Gardner who coined the name ”The Impossible Puzzle”.
Many variations of the game then sprung up in the following years by various mathematicians.
Our summer research focused on understanding the game from a graphical perspective which
allowed us to address any one of the versions of the game, both those that can and can’t
be solved. In this paper, we work with the graph closely, understanding the correlation
between the graph features and the solvability of the puzzle. Most of the paper aims to
develop estimate countings of nodes and degrees of nodes in order to gather the necessary
information needed for a probability proof. The proof is one that aims to justify the patterns
in the parity of the game’s length.

2 The Sum and Product Game

Two numbers k and l are selected privately such that 2 ≤ l ≤ k ≤ 10. The sum of the two
numbers k + l is given to the individual Sum, and the product kl is given to the individual
Product. The Observer is a third individual with no knowledge of the numbers, their sum
or their product. It is easy to see that given specific k and l values, Sum or Product may
already know the value of the two numbers. For example, if k = 5 and l = 2, then while Sum
would not immediately know what l and k are, Product would know the values immediately,
for their is only one factorization of the number 10 (recall that k, l cannot equal 1). So a
conversation between the two may go as follows:

1

Sum: I do not know your product
Product: I do know your sum
Sum: Now I know your product

In knowing that Product was able to discern the values of k and l, Sum was then able
to figure out their values as well. However, knowledge that the other does not know the
values of k and l is still knowledge that can assist either Sum or Product in figuring out the
numbers. So the conversation can also go as follows:

Sum: I do not know your product
Product: I do not know your sum
Sum: I still do not know your product
Product: I still do now know your sum
Sum: Now I know the product
Product: Now I know your sum

In some cases, the Observer may also discern the values of l and k simply in hearing the
exchange between Sum and Product, however this is not always the case.

Given specific l and k values, it is also possible for both Sum and Product to never dis-
cover the value of l and k. Their conversation would go on infinitely where both would say
they still don’t know the values of l and k.

The game may also be played with larger values of l and k. We denote n as the largest
possible value, so in the above example, we let n = 10, however in general, we can define
any n value and we let 2 ≤ l ≤ k ≤ n.

3 The Graph

The sum and product game can be depicted using a graph as shown below. For every pair
l and k, we define an edge connected to two nodes: a pink node with the sum l + k and
a blue node with the product l ∗ k (in other graphs we may depict the product node by a
square, and the sum node with a circle). The graph does not include the values of l and k
for readability.

2

Figure 1: Graph of sum and product game for n = 10

4 Notation

Some notation for future use:

G(n) : Graph with max value n (2 ≤ l ≤ k ≤ n)

Vp(n) : Product nodes in G(n)

Vs(n) : Sum nodes in G(n)

d(V (n)) : Degree of node in G(n)

Vp,d=3(n) : Condition on node (product node with degree equal to 3).

5 Counts

We begin by developing counts for various elements of the graph to use in upcoming proofs.

5.1 Number of Edges

An edge depicts a pair l and k whose values are between 2 and n. The number of edges is
then equal to the number of ways we can select two numbers between 2 and n allowing for
repetition (as l and k can equal each other). Thus the number of edges is equal to:(

(n− 1) + 2− 1

2

)
=
n(n− 1)

2

5.2 Degree of Given Sum Node

To count the degree of a sum node, we partition the sum as evenly as possible, and find the
difference between the partition and the lower and upper bounds of 2 and n. So for example,
for the sum node 15, we first consider the most even partition, l = 7, k = 8. We count the

3

number of times we can decrease l and increase k until one or the other hits the bounds.
That is, we calculate 7− 2 and n− 8, and the degree of the sum node will be one more than
the minimum of these two values. Therefore the degree of a sum node can be given by the
following minimum function:

min(n−
⌈
Vs
2

⌉
+ 1,

⌊
Vs
2

⌋
− 1)

5.3 Degree of Given Product Node

Product nodes are more difficult to work with as we are dealing with the number of ways
one can factor a number (not including the trivial factorization). As of now, we have a count
for the final degree of a product node, as in, what the degree of a product node is given
that n is big enough to encompass all possible factorization. To do this we must use the
prime factorization of a number. So we write a product node Vp as the product of primes
pa11 p

a2
2 . . . pamm . Then the number of ways you can partition these primes into two non-empty

sets is defined by ⌈∏m
i=1(ai + 1)

2

⌉

5.4 Number of Sum Nodes

The number of sum nodes is an easy count. The smallest sum node possible is 2+2 = 4 and
the largest sum node is n + n = 2n. It is clear to see that every value between 4 and 2n is
achievable as a sum node, thus the total number of sum nodes is

2n− 3

6 Estimates

There are some properties of the graph that we are unable to count with accuracy, but we
can develop estimates for.

6.1 Estimate for Number of Product Nodes

To estimate the number of product nodes in our graph we consider the range of product
nodes possible, then subtract the sets of products that are not achievable.
The smallest product node possible is 2 ∗ 2 = 4. The largest product node is n ∗ n = n2. We
define 3 cases of values that are not included in our product sets.

1. Primes between 2 and n2

(a) Case 1: Primes less than and equal to n

(b) Case 2: Primes between n and n2

2. Multiples of primes that fall under case (b) above

4

3. Product of three primes such that every partition of the primes contains a value larger
than n

We wish to count the number of values that fall under each of the above cases. We group
case 1b with case 2 for convenience.

1. Number of primes less than or equal to n:

Using the prime number theorem, we know that the density of primes less than n is 1
ln(n)

,
thus the number of primes less than or equal to n can be approximated by the function

π(n) :=
n

ln(n)

2. Number of primes and their multiples between n and n2:

We use the prime density function we mentioned above. We integrate between n and n2

over primes p with the function 1
ln(p)

∗ n2

p
, which is the density of primes times the number

of multiples of the primes between n and n2.∫ n2

n

1

ln p
∗ n

2

p
dp = n2(ln 2)

2. Number of triples such that each partitioning contains a value larger than n

An example of this for n = 10 is the value 75, which has prime factorization 3 ∗ 5 ∗ 5.
The only possible partitions are 15 ∗ 5 or 3 ∗ 25, an in both cases one number is larger than
10, and hence 75 cannot exist as a product node in the graph of G(10).

Let x, y, z be three primes between 2 and n. To count the number of triples, we need
to count the number of values that satisfy the following conditions:

xyz ≤ n2

xy > n

xz > n

yz > n

In order to find the solution space to the above system of equations, we work in the
log-log-log space to make our equations linear. We define the following variable changes:

x̃ = ln(x)

ỹ = ln(y)

z̃ = ln(z)

ñ = ln(n)

5

Using these new variables we have the following system of equations:

x̃+ ỹ + z̃ ≤ 2ñ

x̃+ ỹ > ñ

x̃+ z̃ > ñ

ỹ + z̃ > ñ

Now we have a system of 4 linear equations with 3 variables, (recall that ñ is a con-
stant). The solution space for this system of equations is a tetrahedron with the following
parameterization:

ñ− ỹ ≤ z̃ ≤ 2ñ− x̃− ỹ

ñ− x̃ ≤ ỹ ≤ x̃

ñ/2 ≤ x̃ ≤ ñ

Figure 2: The tetrahedron solution space in log-log-log space with n = 10.

The density of primes in the new triple log space is now just 1
x̃ỹz̃

. We also have to use a
Jacobian transformation to take into account the variable change.∣∣∣∣∣∣∣

∂x
∂x̃

∂x
∂ỹ

∂x
∂z̃

∂y
∂x̃

∂y
∂ỹ

∂y
∂z̃

∂z
∂x̃

∂z
∂ỹ

∂z
∂z̃

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
ex̃ 0 0
0 eỹ 0
0 0 ez̃

∣∣∣∣∣∣ = ex̃+ỹ+z̃

Putting all these pieces, we get the following integral:

ψ(n) :=

∫ ñ−1

ñ/2

∫ x̃

ñ−x̃

∫ 2ñ−x̃−ỹ

ñ−ỹ

ex̃+ỹ+z̃

x̃ỹz̃
dx̃ dỹ dz̃

6

As of yet, we do not have a solution for this integral, so we will denote the integral by ψ(n)

Theoretically, we could also extend our count to include the product of 4 primes such that
each partition has an element larger than n, or even 5 primes and so on, however, the process
is similar to the above, but more tedious, and so we move on.

Using all these counts of sets to not include, we get an underestimate for the number of
product nodes in G(n) as:

n2 − 1 − n

lnn
− n2(ln 2) − ψ(n)

7 Distributions

Next, we consider the distribution of degrees in both the sum and product nodes in a graph
of G(n)

7.1 Distribution of Sum Node Degrees

As usual, analyzing the sum nodes is fairly simple. We have an equation in section 4.2 that
details the degree of any given sum node, and using that equation it is simple to see that
for any n value, and selected degree d, there are only 4 possible choices of sum nodes that
would have a specific degree d. For example, the 4 sum nodes of degree 1 are the nodes 4,
5, 2n− 1 and 2n. Similarly the 4 nodes of degree 2 are 6, 7, 2n− 3 and 2n− 2, and so on.
Depending on the size of n, the total number of sum nodes may not be a multiple of 4, so
there may not be exactly 4 nodes of the largest degree size, but that is the only exception.

Thus the distribution of sum node degrees takes on a uniform distribution where the fre-
quency of each degree is exactly 4.

7.2 Distribution of Product Node Degrees

Again, this distribution is more complicated than the sum nodes. The way we went about
this was to use a method similar to a Markov chain. Consider a graph G(n) and a specific
product node Vp with degree d. Then in the graph of G(n + 1), the degree of Vp will either
remain d, or it will have degree d+ 1 if Vp is divisible by n+ 1.

The goal is to find the probability that a product node of degree 1 becomes a node of
degree 2 as n increases by 1, we will call this probability β1. Similarly, we want to find the
probability that a product node of degree 2 becomes a product node of degree 3, we denote
this probability β2. We could also find the probabilities for nodes of larger degrees, but
for now, we simply wish to find the distribution of degrees 1, 2 and 3. Lastly, because our
system is not closed, and new nodes are introduced as n increases, we also need to find the
number of new nodes of degree 1 that are added to the graph as n increases by 1, we denote

7

this number by α. One we have these three numbers, we can start with a distribution of
degrees in G(n), and calculate the distribution in G(n+1). And by reiterating this process,
we can find the distribution as n gets infinitely large.

We decided to use n = 50 as a base case. In G(50) we have the following degree frequency:

|Vp,d=1(50)|
|Vp,d=2(50)|
|Vp,d≥3(50)|

 =

518162
104

Then to find the frequency of degrees at n = 51 we complete the following calculation:

[
518 162 104

]
·

1− β1 β1 0
0 1− β2 β2
0 0 1

+
[
α 0 0

]
It is important to note that our variables β1, β2, α are all functions of n, so to reiterate this
calculation, we cannot merely raise our matrix to higher powers. Instead, at the current
moment in time, we are stuck merely re-doing the calculation for every time n increases by
one.

So now that we know what we wish to accomplish, we must now calculate the values of
these variables.

We start with the value of α. As a reminder, α is the number of new nodes added as n
increases by 1. Another way of thinking about this, is that α is the number of product nodes
of degree 0 that became degree 1. Fortunately, we have a function that estimates the total
number of product nodes in G(n), which we can denote |Vp(n)|. So we can estimate the
value of α with the following calculation:

α = |Vp(n)| − |Vp(n− 1)|

Next, we will tackle β2. The probability that a product node increases in its degree is
equivalent to the probability that a node is divisible by n (not counting the value of n itself,
as 1 ∗n is not a valid product). There are n-1 valid multiples of n between 4 and n2, and we
have to consider that approximately α of them are new nodes rather than existing nodes.
So the probability that a node of degree 2 increases in it’s degree from G(n− 1) to G(n) is
approximately:

β2 =
n− 1− α

|Vp(n− 1)|

Lastly, we want the probability β1. This is very similar to β2, the only change we make is

8

that we acknowledge the fact that a lot of product nodes of degree 1 are fixed, as in their
degree will not increase as n increases. This is specifically in the case of nodes which are a
product of two prime numbers. So to calculate this probability, we use the same formula for
β2 but then also multiply it by the probability that a number is not the product of 2 primes.
The number of numbers that are a product of two primes is

(
π(n)+1

2

)
, the probability that a

number is the product of two primes is then
(π(n)+1

2)
|Vp(n−1)| , and the probability that a number is

not the product of two primes is one minus the above expression. Putting all these pieces
together we get that

β1 =
n− 1− α

|Vp(n− 1)|
∗

(
1−

(
π(n)+1

2

)
|Vp(n− 1)|

)
Now that we have expressions for the values of α, β2 and β2, we can plug them into our

matrix, and using our base case of n = 50 we can reiterate the function and use a program
to see how the distribution changes as n increases. We see that the distribution levels off
pretty quickly and stabilizes at the following distribution |Vp,d=1|/|Vp|

|Vp,d=2|/|Vp|
|Vp,d≥3|/|Vp|

 =

 0.58
0.20
0.22

 ≈

 0.573
0.203
0.224

where the vector

[
0.58 0.20 0.22

]T
is the estimate we get from our Markov chain, and the

vector to the right of that
[
0.573 0.203 0.224

]T
is the distribution generated by our code

for large graphs. So it seems that our model does a pretty good job with the distribution
estimate.

8 Probability Proof

The sum and product game is essentially a conversation between two players with different
bits of information, and the game ends when either individual is able to discern the values
of l and k. We know that the game can end after only a single turn, if the sum value can
only be partitioned in one way. From data collection, we also know that the conversation
can last up to 15 turns of each player not knowing the value of the sum and product before
one person finally gets it. So the question we decided to ask is, for any game of size n, what
is the longest length of the game, which is equivalent to finding the maximum chain length
in a graph. We collected data for the longest chain length up until n = 1000 and found the
following properties:

1. Almost half of the graphs had a maximum chain length of 6.

2. For the graphs that did not have maximum chain length of 6, their chain length was
almost always an odd length.

3. Other than the graphs that had a chain length of 6, there are only 3 graphs with an
even max chain length for all n values up to 1000.

9

First we aimed to understand the frequency of the length 6 chain. Upon closer inspection we
were quickly able to detect that the 6-chain in all of these graphs is in fact the same chain,
and it is the only permanent chain in all our graphs.

24 10 107128

15

16

21

25

14

11

This chain starting with the product node 24 is found in every graph regardless of the size
of n because the l and k values associated with these edges are all small, and the nodes do
not have any further factorizations. So increasing n will not result in any additional edges
being added to these nodes, which is why this chain is permanent. My research partner
Nila proved that this chain is in fact the only permanent chain, and that any other would
eventually connect to the rest of the graph and become a loop as n increases. The frequency
of the value 6 as the maximum chain length is then easy to explain, as those are all the times
this permanent chain is longer than any other chain in the graph.

The next thing we sought to understand is why the rest of the n values were much more
likely to have an odd chain length over an even one. To do this we first analyze what it
means to have an odd or even chain length graphically.
An odd chain length means that the chain starts with a sum node. Similarly, an even chain
length must start with a product node. So our question now boils down to: why is it that a
chain is more likely to start with a sum node instead of a product node?
The beginning of a chain must have the following properties:

• The node must be on the edge of the graph (Vs(n) ≥ 2n− k
√
n).

• The degree of the node is at least 3.

• At least 3 neighbors of the node must have degree at least 2.

The first property ensures that we are looking at the significant areas of the graph, away
from all the loops. We define the edge as the parts of the graph where the value of the sum
nodes are greater than 2n− k

√
n, where k is a constant that simply adjusts just how far on

the edge we are. The second property is important to ensure that the node we are looking at
has one edge that connects to the rest of the chain, and two other edges are a part of a loop.
The third property ensures that the three neighboring nodes we just noted are in fact either
connected to a chain or are part of a loop, and are not just leaves that dont have any other
connections. With these requirements for a node to start a chain, we use our countings and

10

estimates to find the probability that a product node or a sum node meets these necessary
requirements.
We begin by first defining some constants we will need for this probability.

• α = average degree of sum nodes on edge.

• p1 = probability that product node on the edge has degree at least 2.

• p2 = probability that product node on the edge has degree at least 3.

Once we have these values, we use a Bernoulli distribution to find the probability that a sum
or product node is the start of a chain.
Sum: The probability that a sum node is on the edge of the graph, has a degree of at least
3, and is connected to at least 3 product nodes each of degree at least 2 is equal to

1− bin(α, 0, p1)− bin(α, 1, p1)− bin(α, 2, p1). (8.1)

Another way to think about this probability is that we find the probability that a sum node
is connected to no product nodes of degree at least 2, or only 1 product node of degree at
least 2, or only 2 product nodes of degree at least 2. Then we do one minus that value,
which gives us the desired probability.

For a product, that last condition that it should be connected to at least 3 sum nodes
of degree at least 2 is almost negligible. The reason for this being that out of all the sum
nodes, only 4 of them have degree 1, so the probability that the neighboring sum nodes have
degree at least 2 is can be approximated as 1. Therefore we do not bother taking that into
account in our probability function.
Product: The probability that a product node is on the edge of the graph, has a degree of
at least 3, and is connected to at least 3 sum nodes each of degree at least 2 is equal to

1− bin(α, 0, p2)− bin(α, 0, p1). (8.2)

Now all that is left is to find the values of α, p1, p2. The only problem is that all the distri-
butions and countings that we have developed are for an average sum or product node, but
we wish to focus on nodes on the edge of the graph, and their degree distribution is very
different. So for now, we use our program to give us the degree distribution we need for the
values of p1 and p2.

Figure 3 shows the distribution of degrees on the edge (where we let k = 5)for n rang-
ing between 10 and 200.

Using the probabilities in the data above, we use equations 8.1 and 8.2 to find the probabil-
ity that a product or sum node has the necessary conditions to begin a chain, below is our
results in figure 4.

We see that the probability of a sum node starting a chain is approximately 0.45, whereas
a product node lands at a probability of 0.075. This confirms our data which found it much
more likely that a chain will be of odd length than even length, as desired.

11

Figure 3: A distribution of the degrees for k = 5, and 10 ≤ n ≤ 200.

Figure 4: Probability outputted by equations 8.1 and 8.2. for 10 ≤ n ≤ 300.
Blue: 8.1, Green: 8.2

9 Conclusion and Future Research

Throughout this paper, we have managed to develop countings and estimates for various
features of the graph that aided us in the beginning of a probability proof regarding the
patterns behind the parity of chain lengths. However, most of our countings were of the
entire graph, and when developing our proof, we found that it was necessary to address
the features of nodes in more specific regions of the graph, specifically those on the edge
(away from the loops in the middle). Future research would aim to adjust our countings

12

and estimates to be able to focus on specific regions of the graph. We would also attempt
to improve our estimate on the total number of product nodes, as our current estimate is
not terribly accurate for n values larger than 1000. In addition to tightening our current
estimate, which serves as a lower bound, we would also attempt to create an upper bound
as well for the total number of product nodes.

13

10 Appendix: Code

from turtle import color

import networkx as nx

import itertools as it

import matplotlib.pyplot as plt

from math import*

import sympy

import numpy as np

from sklearn.linear_model import LinearRegression

import re

import collections

import pandas as pd

from random import randint

from tabulate import tabulate

from matplotlib.pyplot import cm

import scipy.stats as ss

from scipy import exp

from scipy.integrate import tplquad

###

function that prints graph

###

def thegraph(MAX):

Building the graph

G = nx.Graph()

for i, j in it.combinations_with_replacement(range(2, MAX+1), 2):

sum_node = f’S{i+j}’ # ’S6’ for i=2, j=3

prod_node = f’P{i*j}’

G.add_edge(sum_node, prod_node)

color_map = [’pink’ if node.startswith(’S’) else ’lightblue’ for node in G]

options = {

’node_color’: color_map,

’node_size’: 600,

’font_size’: 10,

’width’: 0.8,

’with_labels’: True,

}

plt.figure(1, figsize=(16,6)) # Add 1, 2,.. for additional figures

nx.draw(G, nx.nx_agraph.graphviz_layout(G), **options)

Removing the leaves

14

leaves = [node for node in G if G.degree(node) <= 1]

G.remove_nodes_from(leaves)

Drawing the graph without leaves

color_map = [’pink’ if node.startswith(’S’) else ’lightblue’ for node in G]

options[’node_color’] = color_map

plt.figure(2, figsize=(10,6))

nx.draw(G, nx.nx_agraph.graphviz_layout(G), **options)

leaves left after 4 levels of removal

i = 2

for i in range(2, 5):

leaves = [node for node in G if G.degree(node) <= 1]

G.remove_nodes_from(leaves)

i += 1

plt.show()

###

#function that gives you the various partitions of a sum

###

def sums(n, numb):

answer = set()

p1 = floor(numb/2)

p2 = ceil(numb/2)

while p1 >= 2 and p1 <= n:

answer.add(tuple((p1, p2)))

p1 = p1-1

p2 = p2+1

return answer

###

printing longest chain (defining functions)

###

Building the graph

def BuildGraph(n):

G = nx.Graph()

for i, j in it.combinations_with_replacement(range(2, n+1), 2):

edge = (f’S{i+j}’, f’P{i*j}’)

G.add_edge(*edge, component=(i, j))

nx.set_node_attributes(G, {node: [] for node in G}, ’chain’)

15

return G

Removing the leaves

def RemoveLeaves(G):

leaves = [node for node in G if G.degree(node) == 1]

for leaf in leaves:

neighbor = list(G.neighbors(leaf))[0]

long_chain = G.nodes[leaf][’chain’] + [leaf]

if len(G.nodes[neighbor][’chain’]) < len(long_chain):

nx.set_node_attributes(G, {neighbor: long_chain}, ’chain’)

G.remove_nodes_from(leaves)

return leaves

def LongestPath(G):

for i in it.count():

if not RemoveLeaves(G):

break

return max([G.nodes[node][’chain’]+[node] for node in G.nodes], key=len)

###

longest chain length

###

def max_chain(MIN, MAX):

for n in range(MIN, MAX + 1):

Building the graph

G = nx.Graph()

for i, j in it.combinations_with_replacement(range(2, n+1), 2):

sum_node = f’S{i+j}’ # ’S6’ for i=2, j=3

prod_node = f’P{i*j}’

G.add_edge(sum_node, prod_node)

finding the longest chain length

chain = LongestPath(BuildGraph(n))

leaves = [node for node in G if G.degree(node) <= 1]

j = -1

while len(leaves) > 0:

leaves = [node for node in G if G.degree(node) <= 1]

G.remove_nodes_from(leaves)

j += 1

if len(leaves) == 0:

print(j)

print()

16

###

#Preliminary counting functions

###

def combi(n, r):

return factorial(n)/(factorial(n-r)*factorial(r))

def rep_combi(n, r):

return combi(n+r-1, r)

def pi2(x):

#return sympy.primepi(x)

return floor(x/log(x))

###

number of product nodes

###

def ProductNodes(n):

G = BuildGraph(n)

noodles = list(G.nodes())

pewpew = len([x for x in noodles if x.startswith(’P’)])

return(pewpew)

###

#Product Nodes Estimation Functions

###

def estim_prod_node_10(n):

p1 = n**2*(log(2)) #number of primes and their multiples

p2 = pi2(n) # primes smaller than n

func = lambda z, y, x: exp(x+y+z)/(x*y*z)

N = log(n)

x1, x2 = N/2, N-1

y1, y2 = lambda x: N-x, lambda x: x

z1, z2 = lambda x, y: N-y, lambda x, y: 2*N-x-y

p3 = tplquad(func, x1, x2, y1, y2, z1, z2)

return n**2 - p1 -p2 - p3[0]

###

#Probability functions

###

def bin_dist(n, r, p):

return combi(n, r)* p**r *(1-p)**(n-r)

17

def probability_sum2(n):

k = 5

p1 = 1 - final(n)[0] #prob a prod node has degree 2 or more

a = floor(s_avg(n))

return 1-(bin_dist(a, 0, p1) + bin_dist(a, 1, p1)

+ bin_dist(a, 2, p1))

def probability_prod2(n):

p1 = 1- final(n)[0]

k = 5

p2 = 1- final(n)[0] - final(n)[1] #prob a prod node has degree 3 or more

a = floor(s_avg(n))

return (1- (bin_dist(a, 0, p2) - bin_dist(a, 0, p1)))

18

References

[1] M. Gardner. Mathematical games. Scientific American, 241(6):22–32, 1979.

[2] G. SHAKAN. On higher energy decompositions and the sum–product phenomenon.
Mathematical Proceedings of the Cambridge Philosophical Society, 167(3):599–617, jul
2018.

19

	Introduction
	The Sum and Product Game
	The Graph
	Notation
	Counts
	Number of Edges
	Degree of Given Sum Node
	Degree of Given Product Node
	Number of Sum Nodes

	Estimates
	Estimate for Number of Product Nodes

	Distributions
	Distribution of Sum Node Degrees
	Distribution of Product Node Degrees

	Probability Proof
	Conclusion and Future Research
	Appendix: Code

