Our UG Davis REU Experience

Arboreal Lagrangian skeleta for 4-manifolds

Sam Sottile, Eha Srivastava, Jessica Zhang
UC Davis Math REU • August 10-11, 2022

Section 1

Smooth handle decompositions

Smooth manifolds

A smooth n-manifold M is a topological space covered by charts (U, φ) such that $\varphi: U \rightarrow \mathbb{R}^{n}$ is a homeomorphism and, for any two charts (U, φ) and (V, ψ), the $\operatorname{map} \varphi \circ \psi^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a diffeomorphism. For a smooth n-manifold with boundary, we can replace \mathbb{R}^{n} with $\mathbb{R}^{n-1} \times \mathbb{R}_{\geq 0}$.

> not a smooth manifold

smooth 2-manifold with boundary

$D^{2}=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$
smooth 1-manifold without boundary

$$
\partial D^{2}=S^{1}=\left\{(x, y): x^{2}+y^{2}=1\right\}
$$

(Co)tangent bundles

At each point $x \in M$, there is an n-dimensional real vector space $T_{x} M$ consisting of the vectors tangent to M at x. The tangent bundle $T M$ is the smooth $2 n$-manifold

$$
T M=\coprod T_{x} M=\left\{(x, v): x \in M, v \in T_{x} M\right\}
$$

The dual of the tangent bundle TM is the cotangent bundle

$$
T^{*} M=\coprod T_{x}^{*} M=\left\{(x, \varphi): x \in M, \varphi: T_{x} M \rightarrow \mathbb{R} \text { is linear }\right\} .
$$

papa's donuteria

papa's donuteria

Handles and company

For $0 \leq k \leq n$, an n-dimensional k-handle is a copy of $D^{k} \times D^{n-k}$ with an attaching embedding $\varphi: \partial D^{k} \times D^{n-k} \rightarrow \partial M$.

Examples of handles

Two ways to attach a 1-handle to D^{2}, depending on orientability

Attaching a 3-dimensional 2-handle along Σ

Diffeomorphism type of a handle attachment

The diffeomorphism type of $M \cup_{\varphi} h$ is specified by:

1. an embedding $\varphi_{0}: S^{k-1}=\partial D^{k} \times\{0\} \rightarrow \partial M$
2. a (normal) framing of $\varphi_{0}\left(S^{k-1}\right)$, i.e., an identification of the normal bundle $\left.T M\right|_{\varphi_{0}\left(S^{k-1}\right)} / T \varphi_{0}\left(S^{k-1}\right)$ with the trivial bundle $S^{k-1} \times \mathbb{R}^{n-k}$

Handlebodies

If M is a compact n-manifold, then a handle decomposition of M is a way to obtain M by attaching handles. Every manifold admits a handle decomposition (Morse 1931). A manifold with a given handle decomposition is a handlebody.

Nonuniqueness of handle decompositions

Handle cancellation

Proposition

If h_{k-1} is a $(k-1)$-handle and h_{k} is a k-handle such that the attaching sphere A of h_{k} intersects the belt sphere B of h_{k-1} transversely at one point, then h_{k-1} and h_{k} can be canceled.

Requiring that A and B intersect transversely amounts to requiring that $T_{x} A$ and $T_{x} B$ span the tangent space of the ambient manifold, where x is the unique point in $A \cap B$.

Handle slides

Consider k-handles h_{1} and h_{2} which are attached to ∂M. A handle slide is given by pushing the attaching sphere of h_{1} through the belt sphere of h_{2}.

Theorem (Cerf 1970)

Any two handle decompositions of M can be made equivalent by sliding handles, creating or annihilating canceling handles, and isotopying within levels.

Drawing the torus in one dimension or something lol

Drawing the torus in one dimension or something lol

Kirby diagrams

A Kirby diagram of the cotangent bundle $T^{*} T^{2}$ of the torus

A Kirby diagram of something else entirely

Our UC Davis REU Experience

Section 2

Symplectic and Weinstein stuff

Symplectic forms

A differential k-form ω on M smoothly assigns a map

$$
\omega_{x}: \underbrace{T_{x} M \times \cdots \times T_{x} M}_{k \text { times }} \rightarrow \mathbb{R}
$$

which is linear in each term for each $x \in M$ and which is alternating (e.g., for a 2-form, we always have $\omega_{x}(u, v)=-\omega_{x}(v, u)$).

There is a linear map d called the exterior derivative which takes k-forms to $(k+1)$-forms. It generalizes the differential of a function.

A symplectic form is a 2 -form ω which is

1. closed: $d \omega=0$
2. nondegenerate: If for any $v \in T_{x} M$, there exists $u \in T_{x} M$ such that $\omega_{x}(v, u) \neq 0$
If ω is a symplectic form on M, then we call (M, ω) a symplectic manifold. Symplectic manifolds are always even-dimensional!

Lagrangian submanifolds

A submanifold X of a symplectic manifold (M, ω) is Lagrangian if, for every $x \in X$, we have $\left.\omega_{x}\right|_{T_{x} X} \equiv 0$ and $\operatorname{dim} T_{x} X=\frac{1}{2} \operatorname{dim} T_{x} M$.
Example: There is a canonical symplectic form on $T^{*} M$. With this form, the zero section

$$
M_{0}=\left\{(x, \xi) \in T^{*} M: \xi=0 \text { in } T_{x}^{*} M\right\}
$$

of $T^{*} M$ is a Lagrangian submanifold of $T^{*} M$.

Example: The cotangent bundle over S^{1} can also be visualized as the cylinder $S^{1} \times \mathbb{R}$. In this case, the zero section is simply the blue copy of S^{1}.

Liouville shenanigans

If $\omega=d \alpha$ for some 1 -form α, then we call α a Liouville form.
There is a vector field (i.e., a choice of tangent vector at every point $x \in M$) called the Liouville vector field associated to α.

A Liouville domain is a symplectic manifold with boundary with a Liouville vector field that points transversely out of the boundary. Its skeleton is obtained by flowing the vector field backwards.

Example: There is a standard Liouville form on $\mathbb{R}^{2 n}$. The Liouville vector field in this case is the radial vector field. The disk $D^{2 n} \subset \mathbb{R}^{2 n}$ is a Liouville domain whose skeleton is the origin.

Legendrian knots

If M is a Liouville domain, then its Liouville form induces a contact structure on ∂M. In the case where M is a 4-manifold, a contact structure simply assigns a plane to every point on the boundary. A knot in ∂M is an embedding $S^{1} \rightarrow \partial M$. If this knot lies tangent to the contact structure at every point, then we call it Legendrian.

The standard contact structure in \mathbb{R}^{3}

An example of a
Legendrian knot

Drawing Legendrian knots

A Legendrian knot is constrained by the contact structure in such a way that its y-coordinate is $d z / d x$. It's thus determined by its projection onto the $x z$-plane. This projection will be an immersion except at finitely many cusps and will have no vertical tangencies. The strand with more negative slope is in front.

Drawing a Legendrian trefoil smoothly

life as a Weinstein paparazzo

A Liouville domain is a Weinstein domain if there is an associated function which acts as a gradient.

In the symplectic case, we replace smooth k-handles with Weinstein k-handles.

Theorem (Weinstein 1991)

Any Weinstein $2 n$-manifold can be decomposed into Weinstein k-handles for $0 \leq k \leq n$.

We can draw Kirby diagrams for Weinstein 4-manifolds (a diagram of the torus is shown below). In this setting, the attaching sphere of the 2-handle is a Legendrian knot whose framing is predetermined.

Reidemeistering

Theorem (Swiatkowski 1992)

Two front projections represent Legendrian isotopic knots if and only if the two diagrams can be related by a finite sequence of smooth isotopies and the Legendrian Reidemeister moves below.

Handle slide rule cusp etc so on lalalala

...

...

-••

...

manifolds obtained by attaching 2 -handle along torus knots

 stuffConsider the 4-manifold obtained by attaching a Weinstein 2-handle along the Legendrian ($2, n$)-torus knot.

While this manifold has a simple description, it is difficult to determine a sufficiently nice Lagrangian skeleton for it.

arboreal (tree) skeleton definition

Now, consider the following arboreal Lagrangian skeleton obtained by attaching Lagrangian 2-disks to the (cotangent bundle) genus g surface.

One of the main objectives of our project was to show that the resulting 4-manifold is the same as the 4-manifold defined by attaching a Weinstein 2 -handle to a single 0 -handle along the $(2,2 g+1)$-torus knot.

Our UC Davis REU Experience

Section 3
Results and stuff

endgame

Theorem. An arboreal Lagrangian skeleton for the 4-manifold obtained by attaching a Weinstein 2-handle along the $(2,2 g+1)$-torus knot to D^{4} is given by the genus g surface with embedded disks:

funny torus

Genus 1:

funnier torus

Genus 2:

slide title

Our goal is to show that the Kirby diagrams below are equivalent.

donut case

pants case

more holes 2: electric boogaloo

Theorem. An arboreal Lagrangian skeleton for the 4-manifold obtained by attaching a Weinstein 2-handle along the $(2,2 g+1)$-torus knot to D^{4} is given by the genus g surface with embedded disks:

with a twist (or several)

