A Sum and Product Game

Yuanyuan Shen

Abstract

A sum-and-product game involves two numbers $2 \leq p, q \leq n$ for fixed n as well as two participants, a sum person who knows $p+q$ and a product person who knows $p q$. Starting from the sum person, the two participants alternatively answer the dichotomous question of whether they know p and q. By identifying a game with a graph, this paper examines various properties of the sum-and-product game, eventually proving that a certain independence conjecture implies the conjecture that there are infinitely many n where an observer can determine p, q after hearing exactly 4 NO before a YES.

1 Introduction

In a sum-and-product game of n, two numbers, not necessarily distinct, are chosen from the range of positive integers greater than 1 and not greater than n. The sum of the two numbers is given to a sum person, and the product of the two numbers is given to a product person. Starting from the sum person, the two participants alternatively answer the question of whether they know the two numbers.

The game can be identified with a bipartite graph $G(n)$ whose vertices consist of all possible sums and products, and where each edge, representing a possible pair of numbers, connects their sum with their product. We deduce the necessary and sufficient conditions on the structure of the graph centered around the sum node $p+q$ for a game with the pair of numbers (p, q) to involve a certain number of 'NO' before the first 'YES.'

We prove additional properties of $G(n)$, and hence of the corresponding game. First, there is no path of length greater than one starting from a sum node k if $1+2 n-\sqrt{1+4 n}<k \leq 2 n$. Secondly, if a pair of numbers involves l 'NO' before the first 'YES' in a game of n, then for every $l^{\prime}<l$, there is a pair of numbers involving l^{\prime} 'NO' before the first 'YES' in a game of n. Thirdly, the pair of $(4,4)$ involves 4 'NO' before the first 'YES' in a game of n if and only if $n \geq 8$.

An observer is able to determine the pair of numbers (p, q) after hearing 4 'No' before the first 'YES' if and only if there is exactly one pair of numbers involving 4 'No' before the first 'YES'. Equivalently, when $n \geq 8$, there is no other pair than $(4,4)$ involving 4 'No' before the first 'YES'. We prove there are infinitely many n such that an observer cannot determine the pair of numbers (p, q) after hearing 4 'No' before the first 'YES' using an explicit construction. Under certain assumptions of independence, we also prove there are infinitely many n such that an observer can determine the pair of numbers (p, q) after hearing 4 ' No' before the first 'YES'.

2 Properties of the sum-and-product game

A sum-and-product game of n can be identified with a graph $G(n)$. In the example of $G(12)$ in Figure 1, each edge represents a possible pair $(p, q), 2 \leq p, q \leq n$, and connects a square node of their product with a circle node of their sum. Starting with definitions relating to the graph, we prove various properties of the graph and of its related game.

Figure 1: The graph $G(12)$
Definition 1. A sum path P of length $l=l(P)$ in $G(n)$ is two length l sequences a_{i}, b_{i} such that $(\forall i) a_{i} \neq a_{i+1}$, $a_{i} \geq b_{i}$, and $\left(\forall 1 \leq i \leq \frac{l}{2}\right) a_{2 i} b_{2 i}=a_{2 i-1} b_{2 i-1},\left(\forall 1 \leq i \leq \frac{l-1}{2}\right) a_{2 i}+b_{2 i}=a_{2 i+1}+b_{2 i+1}$.

Definition 2. A product path P of length $l=l(P)$ in $G(n)$ is two length l sequences a_{i}, b_{i} such that $(\forall i) a_{i} \neq a_{i+1}$, $a_{i} \geq b_{i}$, and $\left(\forall 1 \leq i \leq \frac{l}{2}\right) a_{2 i}+b_{2 i}=a_{2 i-1}+b_{2 i-1},\left(\forall 1 \leq i \leq \frac{l-1}{2}\right) a_{2 i} b_{2 i}=a_{2 i+1} b_{2 i+1}$.

Definition 3. A path P of length l in $G(n)$ is either a sum path of length l or a product path of length l.
Definition 4. A cycle C of length l is a path of length $l(C)$ satisfying $a_{1} b_{1}=a_{l} b_{l}$ or $a_{1}+b_{1}=a_{l}+b_{l}$.
Definition 5. A sum tail of length l is a sum path $T=\left(a_{i}, b_{i}\right)$ of length l such that for every other sum path $\bar{T}=\left(\overline{a_{i}}, \bar{b}_{i}\right)$ of length \bar{l}, where $\left(\overline{a_{1}}, \overline{b_{1}}\right)=\left(a_{1}, b_{1}\right), \bar{l} \leq l$.

Definition 6. A product tail of length l is a product path $T=\left(a_{i}, b_{i}\right)$ of length l such that for every other product path $\bar{T}=\left(\overline{a_{i}}, \overline{b_{i}}\right)$ of length \bar{l}, where $\left(\overline{a_{1}}, \overline{b_{1}}\right)=\left(a_{1}, b_{1}\right), \bar{l} \leq l$.

Lemma 1. The length of a sum tail is odd. The length of a product tail is one or even.
Proof. Suppose to the contrary that the length of a sum tail $T=\left(a_{i}, b_{i}\right)$ is $l=2 m$, then $a_{l-1} b_{l-1}=a_{l} b_{l}$. If $a_{l}+b_{l}=4$ or $a_{l}+b_{l}=2 n$, then the pair has length one. Otherwise $\exists\left(a_{l+1}, b_{l+1}\right) \neq\left(a_{l}, b_{l}\right)$ such that $a_{l}+b_{l}=a_{l+1}+b_{l+1}$, and $T^{\prime}=\left(a_{i}, b_{i}\right), 1 \leq i \leq l+1$ is a sum path of length $l+1$. Similarly the length of a product tail is one or even.

Definition 7. A pair of numbers $(p, q), q \leq p \leq n$, has length l in the sum-and-product game of n if (p, q) involves l NO before the first YES in the game of n. Let $C_{l, n}$ denote the set of pairs of numbers of length lin the game of n.

Theorem 2.1. A pair of numbers (p, q) has length $l=2 m-1$ if and only if

- There is one sum tail of length l with $\left(a_{1}, b_{1}\right)=(p, q)$
- There is at least one other sum path of length $l^{\prime} \geq l$ with $a_{1}^{\prime}+b_{1}^{\prime}=p+q, a_{1} \neq p$

A pair of numbers (p, q) has length $l=2 m$ if and only if

- There is at least one sum tail of length $l-1$ with $a_{1}+b_{1}=p+q, a_{1} \neq p$
- There is one sum path of length $l^{\prime}>l-1$ with $\left(a_{1}^{\prime}, b_{1}^{\prime}\right)=(p, q)$
- There is no sum path of length $l^{\prime \prime}>l-1$ with $a_{1}^{\prime \prime}+b_{1}^{\prime \prime}=p+q, a_{1}^{\prime \prime} \neq p$

Figure 2: Examples of a pair (p, q) of length three (left) and a pair (p, q) of length four (right)

Proof. Let the sum person be named Alice and the product person be named Bob.
When $l=1$, Alice cannot differentiate $\left(a_{1}, b_{1}\right)$ from (p, q) and says NO. Bob only has one way to decompose his product and says YES. This results in a pair of length one. In the other direction, suppose there is no sum tail of length 1 with $\left(a_{1}, b_{1}\right)=(p, q)$, then Bob has more than one way to decompose his product and says the second NO. Otherwise, suppose there is no sum path of length $l^{\prime} \geq l$ with $a_{1}+b_{1}=p+q, a_{1} \neq p$. Then Alice only has one way to decompose her sum, resulting in a pair of length zero.

When $l=2$, Alice cannot differentiate $\left(a_{1}, b_{1}\right)$ from (p, q) and says NO. Bob cannot differentiate $\left(a_{1}^{\prime}, b_{1}^{\prime}\right)$ from $\left(a_{2}^{\prime}, b_{2}^{\prime}\right)$ and says NO. Alice knows the numbers must be (p, q), or else Bob only has one way to decompose his product and would have said YES. This results in a pair of length two. In the other direction, suppose there is no sum path of length $l^{\prime}>1$ with $\left(a_{1}^{\prime}, b_{1}^{\prime}\right)=(p, q)$, then Bob only has one way to decompose his product, resulting in a pair of length one. Suppose there is another sum path of length $l^{\prime \prime}>1$ with $a_{1}^{\prime \prime}+b_{1}^{\prime \prime}=p+q, a_{1}^{\prime \prime} \neq p$, then after two NO Alice cannot differentiate between (p, q) and $a_{1}^{\prime \prime}, b_{1}^{\prime \prime}$, resulting in a pair of length more than two. Suppose there is no sum tail of length 1 with $a_{1}+b_{1}=p+q, a_{1} \neq p$, then Alice only has one way to decompose her sum, resulting in a pair of length zero.

Suppose the statement is true for all $l \leq 2 M-2$. When $l=2 M-1$, the pair has length at least $2 M-1$ by the induction hypothesis. After Alice says the $(2 M-2) t h$ NO, Bob knows the numbers must be (p, q), or else Alice would have said YES by the induction hypothesis. This results in a pair of length $2 M-1$.

In the other direction, suppose there is no sum path of length $l^{\prime}>l$ with $a_{1}+b_{1}=p+q, a_{1} \neq p$, and at most one sum path of length l with $a_{1}+b_{1}=p+q$, then by the induction hypothesis the pair has length smaller than $2 M-1$. Otherwise, suppose there is no sum tail of length l with $\left(a_{1}, b_{1}\right)=(p, q)$. If there is no sum path of length l with $\left(a_{1}, b_{1}\right)=(p, q)$, then by the induction hypothesis the pair has length smaller than $2 M-1$. If there is a sum path of length $l^{\prime \prime}>l$ with $\left(a_{1}^{\prime \prime}, b_{1}^{\prime \prime}\right)=(p, q)$, then Bob cannot differentiate $\left(a_{2}^{\prime \prime}, b_{2}^{\prime \prime}\right)$ from (p, q) at the $(2 M-1)$ th step.

When $l=2 M$, the pair has length at least $2 M$ by the induction hypothesis. After Bob says the $(2 M-1) t h \mathrm{NO}$, Alice knows the numbers must be (p, q), or else Bob would have said YES by the induction hypothesis. This results in a pair of length $2 M$.

In the other direction, suppose there is no sum path of length $l^{\prime}>l-1$ with $\left(a_{1}^{\prime}, b_{1}^{\prime}\right)=(p, q)$, then by the induction hypothesis the pair has length smaller than $2 M-1$. Suppose there is a sum path of length $l^{\prime \prime}>l-1$ with $a_{1}^{\prime \prime}+b_{1}^{\prime \prime}=p+q$, $a_{1}^{\prime \prime} \neq p$, then Alice cannot differentiate $\left(a_{1}^{\prime \prime}, b_{1}^{\prime \prime}\right)$ from (p, q) at the $2 M t h$ step. Suppose there is no sum tail of length $l-1$ with $a_{1}+b_{1}=p+q, a_{1} \neq p$, then by the induction hypothesis the pair has length smaller than $2 M-1$.

Corollary 1. A pair of numbers (p, q) has length $l=2 m$ if and only if

- There is one product tail of length l with $\left(a_{1}, b_{1}\right)=(p, q)$
- There is at least one other product path of length $l^{\prime} \geq l-1$ with $a_{1}^{\prime} b_{1}^{\prime}=p q, a_{1}^{\prime} \neq p$

Lemma 2. A sum path $P=\left(a_{i}, b_{i}\right)$ of length two, where $a_{1}+b_{1}=\sum-\delta<\sum=a_{2}+b_{2}$, satisfies $\sum \leq$ $2 a_{2}+\delta-2 \sqrt{\delta a_{2}}$

Proof. Consider

$$
\begin{gathered}
\left(a_{1}+b_{1}\right)^{2} \geq 4 a_{1} a_{2}=4 a_{2} b_{2} \\
\left(2 a_{2}-\sum+\delta\right)^{2}=4 a_{2}^{2}+\left(a_{1}+b_{1}\right)^{2}-4 a_{2}\left(a_{1}+b_{1}\right) \geq 4 a_{2}\left(a_{2}+b_{2}-a_{1}-b_{1}\right)=4 \delta a_{2} \\
2 a_{2}+\delta-2 \sqrt{\delta a_{2}} \geq \sum
\end{gathered}
$$

Lemma 3. Given b, there is no sum path $P=\left(a_{i}, b_{i}\right)$ of length greater than one with $\left(a_{1}, b_{1}\right)=(b+k, b-k)$ in $G(n), n<b+\sqrt{b}$.

Proof. Suppose $(b+k)(b-k)=\left(b+k_{1}\right)\left(b+k_{2}\right)$, and without loss of generality $k_{1} \geq k_{2}$. Then $k_{1} \neq 0$, or else $b \mid k^{2}<b$, and $k_{1} \neq k, k_{1} \neq-k_{2}$, or else $k_{1}=-k_{2}= \pm k$.

If $k_{1}<k<\sqrt{b}$, then $k_{1}>0$. Suppose to the contrary $-\sqrt{b}<-k<k_{2}<k_{1}<0$, then $b^{2}-k^{2}>b^{2}-b$ and $b^{2}+\left(k_{1}+k_{2}\right) b+k_{1} k_{2}<b^{2}-b$, contradicting $(b+k)(b-k)=\left(b+k_{1}\right)\left(b+k_{2}\right)$. Then $0<k_{1}<k \leq \sqrt{b},-k_{2}>k_{1}$ and $\left(b+k_{1}\right)\left(b+k_{2}\right)<b^{2}-b-\left(-k_{2}-k_{1}-1\right) b-k_{1} k_{2}<b^{2}-b$, contradicting $(b+k)(b-k)>b^{2}-b$.

If $0<k<k_{1} \leq \sqrt{b}$, then $-k_{2}<k_{1}$ and by Lemma 2

$$
\begin{aligned}
2 b+k_{1}+k_{2} & \leq 2\left(b+k_{1}\right)+k_{1}+k_{2}-2 \sqrt{\left(b+k_{1}\right)\left(k_{1}+k_{2}\right)} \\
\left(b+k_{1}\right)\left(k_{1}+k_{2}\right) & \leq k_{1}^{2} \\
0<k_{1}+k_{2} & \leq-\frac{k_{1} k_{2}}{b}<1
\end{aligned}
$$

which is a contradiction.
Lemma 4. Given b, there is no sum path of length greater than one $P=\left(a_{i}, b_{i}\right)$ with $\left(a_{1}, b_{1}\right)=(b+k+1, b-k)$ in $G(n), n \leq b+\sqrt{b}-1$
Proof. Suppose $(b+k+1)(b-k)=\left(b+k_{1}\right)\left(b+k_{2}\right)$, and without loss of generality $k_{1} \geq k_{2}$. Then $k_{1}+k_{2}>0$, or else

$$
\begin{aligned}
(b+k+1)(b-k) & =b^{2}+b-k-k^{2} \\
& \geq b^{2}+b-(\sqrt{b}-1)-(\sqrt{b}-1)^{2} \\
& =b^{2}+\sqrt{b} \\
& >b^{2} \\
& \geq\left(b+k_{1}\right)\left(b+k_{2}\right)
\end{aligned}
$$

In addition $k_{1}+k_{2} \neq 1$, or else $k_{1}=-k$ or $k_{1}=k+1$.
Suppose $k_{1}<k+1 \leq \sqrt{b}-1$. Therefore $k_{1}+k_{2}-1>0$, and $\left(b+k_{1}\right)+\left(b+k_{2}\right)>(b+1)+b$. By Lemma 2

$$
\begin{aligned}
2 b+k_{1}+k_{2} & \leq 2\left(b+k_{1}\right)+k_{1}+k_{2}-1-2 \sqrt{\left(k_{1}+k_{2}-1\right)\left(b+k_{1}\right)} \\
4\left(k_{1}+k_{2}-1\right)\left(b+k_{1}\right) & \leq 4 k_{1}^{2}+1-4 k_{1} \\
0<k_{1}+k_{2}-1 & \leq \frac{1-4 k_{1} k_{2}}{4 b}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\frac{1-4 k_{1} k_{2}}{4 b} & <\frac{1-4(\sqrt{b}-1)(2-\sqrt{b})}{4 b} \\
& <1
\end{aligned}
$$

Therefore

$$
0<k_{1}+k_{2}-1 \leq \frac{1-4 k_{1} k_{2}}{4 b}<1
$$

which is a contradiction.
Theorem 2.2. Given n, there is no sum path of length greater than one $P=\left(a_{i}, b_{i}\right)$ with $\left(a_{1}, b_{1}\right)=(b+k, b-k)$ in $G(n), \frac{1+2 n-\sqrt{1+4 n}}{2}<b \leq n$, or $P=\left(a_{i}, b_{i}\right)$ with $\left(a_{1}, b_{1}\right)=(b+k+1, b-k)$ in $G(n), \frac{3+2 n-\sqrt{5+4 n}}{2} \leq b \leq n$.

Proof. By inverting the inequality in Lemma 3 and Lemma 4.
Lemma 5. For a sum tail $T=\left(a_{i}, b_{i}\right)$ of length l, every $T^{\prime}=\left(a_{i}^{\prime}, b_{i}^{\prime}\right), 2 k+1 \leq i \leq l$ is a sum tail of length $l-2 k$ and every $T^{\prime}=\left(a_{i}^{\prime}, b_{i}^{\prime}\right), 2 k \leq i \leq l$ is a product tail of length $l+1-2 k$, where $1 \leq k \leq \frac{l}{2}$.

Proof. Consider $T^{\prime}=\left(a_{i}^{\prime}, b_{i}^{\prime}\right), 2 k+1 \leq i \leq l$, a sum tail of length $l-2 k$ where $1 \leq k \leq \frac{l}{2}$. Suppose to the contrary that there is a sum path $\bar{T}=\left(\bar{a}_{i}, \bar{b}_{i}\right)$ of length \bar{l}, where $\left(\bar{a}_{1}, \bar{b}_{1}\right)=\left(a_{1}^{\prime}, b_{1}^{\prime}\right)$ and $\bar{l}>l$. Then $T^{\prime \prime}=\left(a_{i}^{\prime \prime}, b_{i}^{\prime \prime}\right)$, $\left(a_{i}^{\prime \prime}, b_{i}^{\prime \prime}\right)=\left(a_{i}, b_{i}\right)$ for $1 \leq j \leq 2 k,\left(a_{i}^{\prime \prime}, b_{i}^{\prime \prime}\right)=\left(\bar{a}_{i-2 k}, \bar{b}_{i-2 k}\right)$ for $2 k+1 \leq j \leq l+1$ is a sum path with length $l^{\prime \prime}>l$, $\left(a_{1}, b_{1}\right)=\left(a_{1}^{\prime \prime}, b_{1}^{\prime \prime}\right)$, contradicting that T is a sum tail. Similarly every $T^{\prime}=\left(a_{i}^{\prime}, b_{i}^{\prime}\right), 2 k \leq i \leq l$ is a product tail of length $l+1-2 k$, where $1 \leq k \leq \frac{l}{2}$.

Lemma 6. For a product tail $T=\left(a_{i}, b_{i}\right)$ of length l, every $T^{\prime}=\left(a_{j}, b_{j}\right), 2 k \leq j \leq l$ is a sum tail of length $l+1-2 k$ and every $T^{\prime}=\left(a_{j}, b_{j}\right), 2 k-1 \leq j \leq l$ is a product tail of length $l+2-2 k$, where $1 \leq k \leq \frac{l-1}{2}$.

Proof. Similar to the above.
Theorem 2.3. If $G(n)$ has a pair (p, q) of length l, it has another pair of length l^{\prime} for all $l^{\prime}<l$.
Proof. Suppose l is odd, and let $P=\left(a_{i}, b_{i}\right)$ be the sum path of length l with $\left(a_{1}, b_{1}\right)=(p, q)$, then $\left(a_{l+1-l^{\prime}}, b_{l+1-l^{\prime}}\right)$ is a pair of length $l^{\prime}<l$ by Lemma 5 and Theorem 2.1. Suppose l is even, and let $P=\left(a_{i}, b_{i}\right)$ be the product path of length l with $\left(a_{1}, b_{1}\right)=(p, q)$, then $\left(a_{l+1-l^{\prime}}, b_{l+1-l^{\prime}}\right)$ is a pair of length $l^{\prime}<l$ by Lemma 6 and Theorem 2.1.

Lemma 7. For all $n \geq 12,(6,4)$ is a pair of length six in $G(n)$.
Proof. Consider the sum path T of length five with $\left(a_{1}, b_{1}\right)=(8,2),\left(a_{2}, b_{2}\right)=(4,4),\left(a_{1}, b_{1}\right)=(6,2),\left(a_{2}, b_{2}\right)=$ $(4,3),\left(a_{3}, b_{3}\right)=(5,2)$, with $a_{1}+b_{1}=8+2=7+3=6+4=5+5,\left(a_{1}, b_{1}\right)=(8,2) \neq(6,4)$. Then T is a sum tail of length five since $16=8 \times 2=4 \times 4,12=6 \times 2=4 \times 3,10=5 \times 2$ have no other factorization, $7=4+3$ has no other partition, and $8=6+2=5+3=4+4,15=5 \times 3$ has no other factorization.

In addition, there is a sum path P^{\prime} of length six with $\left(a_{1}^{\prime}, b_{1}^{\prime}\right)=(6,4),\left(a_{2}^{\prime}, b_{2}^{\prime}\right)=(8,3),\left(a_{3}^{\prime}, b_{3}^{\prime}\right)=(9,2),\left(a_{4}^{\prime}, b_{4}^{\prime}\right)=$ $(6,3),\left(a_{5}^{\prime}, b_{5}^{\prime}\right)=(5,4),\left(a_{6}^{\prime}, b_{6}^{\prime}\right)=(10,2)$. Consider all partitions of $10=8+2=7+3=6+4=5+5$. For any other sum path $P^{\prime \prime}$ of length $l^{\prime \prime}$ with $a_{1}^{\prime \prime}+b_{1}^{\prime \prime}=6+4, a_{1}^{\prime \prime} \neq 4$, it follows that $\left(a_{1}^{\prime \prime}+b_{1}^{\prime \prime}\right)=(7,3)$ or $(5,5)$. Since $21=7 \times 3,25=5 \times 5$ have no other factorization, $l^{\prime \prime}=1$.

Corollary 2. For all $n \geq 8,(4,4)$ is a pair of length four in $G(n)$.
Definition 8. Let O denote an observer of the game, then $O(n, r)=Y$ if the observer is able to determine (p, q) where there are r NO before a YES in a sum-and-product game of n and $O(n, r)=N$ if the observer is not able to determine (p, q) where there are r NO before a YES in a sum-and-product game of n.

Lemma 8. $O(n, r)=Y$ if and only if exactly one pair numbers has length r in the sum-and-product game of n.

Figure 3: The pair $\left(p^{2}, p^{2}-2 p\right)$ has length four in a game of $n=p^{2}, p=m(m+1)$
Lemma 9. A sum path P given by $\left(a_{1}, b_{1}\right)=(p(p-1), p(p-1)),\left(a_{2}, b_{2}\right)=\left(p^{2},(p-1)^{2}\right),\left(a_{3}, b_{3}\right)=\left(p^{2}-1,(p-\right.$ $1)^{2}+1$) is a sum tail of length three in $G\left(p^{2}\right)$

Proof. Consider $a_{1} b_{1}=p^{2}(p-1)^{2}=a_{2} b_{2}, a_{2}+b_{2}=p^{2}+(p-1)^{2}=a_{3}+b_{3}$, then P is a sum path. Consider another sum path $P^{\prime}=\left(a_{i}^{\prime}, b_{i}^{\prime}\right)$ of length l^{\prime} with $\left(a_{1}^{\prime}, b_{1}^{\prime}\right)=\left(a_{1}, b_{1}\right)=(p(p-1), p(p-1))$.

$$
\text { If }\left(a_{2}^{\prime}, b_{2}^{\prime}\right) \neq\left(a_{2}, b_{2}\right)=\left(p^{2},(p-1)^{2}\right) \text {, then }(p-1)^{2}=b_{2}<b_{2}^{\prime}<b_{1}^{\prime}=b_{1}=p(p-1)=a_{1}=a_{1}^{\prime}<a_{2}^{\prime}<a_{2}=p^{2} .
$$ Since $a_{1} b_{1}=a_{2}^{\prime} b_{2}^{\prime}=a_{2} b_{2}=p^{2}(p-1)^{2}$, we have $2 p^{2}-2 p=a_{1}+b_{1}<a_{2}^{\prime}+b_{2}^{\prime}<a_{2}+b_{2}=2 p^{2}-2 p+1$. This is a contradiction since $a_{2}^{\prime}+b_{2}^{\prime}$ is an integer.

If $\left(a_{2}^{\prime}, b_{2}^{\prime}\right)=\left(a_{2}, b_{2}\right)$, we seek to show $l^{\prime} \leq 3$. Consider $\left(a_{3}^{\prime}, b_{3}^{\prime}\right)=\left(p^{2}-p+1+k, p^{2}-p-k\right), 0 \leq k \leq p-2$, $\left(a_{4}^{\prime}, b_{4}^{\prime}\right)=\left(p^{2}-p+\alpha, p^{2}-p+\beta\right), \alpha \leq p,\left(p^{2}-p+1+k\right)\left(p^{2}-p-k\right) \leq\left(p^{2}-p+\alpha\right)^{2}$. Then

$$
\begin{aligned}
\left(p^{2}-p\right)^{2}-k^{2}+p^{2}-p-k & \leq\left(p^{2}-p\right)^{2}+\alpha^{2}+2 \alpha\left(p^{2}-p\right) \\
0 & \leq \alpha^{2}+2 \alpha\left(p^{2}-p\right)+k^{2}-p^{2}+p+k \\
\alpha & \geq\left(p-p^{2}\right)+\sqrt{\left(p^{2}-p\right)^{2}+p^{2}-p-k^{2}-k} \\
& \geq 0
\end{aligned}
$$

Consider $a_{3}^{\prime} b_{3}^{\prime}=a_{4}^{\prime} b_{4}^{\prime}$, then $a_{3}^{\prime} \mid a_{4}^{\prime} b_{4}^{\prime}$ and

$$
p^{2}-p+\alpha \quad \mid \quad\left(p^{2}-p+1+k\right)\left(p^{2}-p-k\right)
$$

Since $\operatorname{gcd}\left(p^{2}-p+\alpha, p^{2}-p+1+k\right)\left|(k+1-\alpha), \operatorname{gcd}\left(p^{2}-p+\alpha, p^{2}-p-k\right)\right|(k+\alpha)$,

$$
p^{2}-p+\alpha \mid(k+1-\alpha)(k+\alpha)=k^{2}+k-\alpha^{2}-\alpha
$$

Note that if $\alpha \leq p-1$

$$
\begin{array}{r}
p^{2}-p<n \sqrt{\left(p^{2}-p+1+k\right)\left(p^{2}-p-k\right)} \leq\left|p^{2}-p+\alpha\right| \\
\left|k^{2}+k-\alpha^{2}-\alpha\right| \leq(p-1)^{2}+(p-1)=p^{2}-p
\end{array}
$$

which is a contradiction. If $\alpha=p$, then

$$
p^{2} \mid k^{2}+k-p
$$

This is a contradiction since $\left|k^{2}+k-p\right|<p^{2}$ when $0 \leq k \leq p-2$. Therefore $l^{\prime} \leq 3$ and the sum path P is a sum tail of length three in $G\left(p^{2}\right)$

Theorem 2.4. There are infinitely many n such that $O(n, 4)=N$.
Proof. By Lemma 8, it suffices to find another pair $(p, q) \neq(4,4)$ of length four in $G(n)$ for infinitely many n. By Lemma 9, consider the sum tail of length three with $\left(a_{1}, b_{1}\right)=(p(p-1), p(p-1)), p=m(m+1)$ in $G(n)$. Consider another sum path P^{\prime} of length l^{\prime} with $a_{1}^{\prime}+b_{2}^{\prime}=2 p(p-1)$, and without loss of generality let $a_{1}^{\prime}=p(p-1)+k$, $b_{1}^{\prime}=p(p-1)-k, 1 \leq k \leq p$.

Suppose $l^{\prime} \geq 2$, without loss of generality let $\left(a_{2}^{\prime}, b_{2}^{\prime}\right)=(p(p-1)+\alpha, p(p-1)+\beta), \alpha \leq p,(p(p-1)+k)(p(p-$ $1)-k) \leq(p(p-1)+\alpha)^{2}$. Then

$$
-k^{2} \leq 2 \alpha\left(p^{2}-p\right)+\alpha^{2}
$$

Since $2 \alpha\left(p^{2}-p\right)+\alpha^{2} \leq-2 p^{2}+2 p+1<-p^{2}$ when $p \geq 3$, it follows that $-p^{2} \leq-k^{2} \leq 2 \alpha\left(p^{2}-p\right)+\alpha^{2}<-p^{2}$ when $\alpha \leq-1$. This is a contradiction, and $\alpha \geq 0$. Consider

$$
p(p-1)+\alpha \mid(p(p-1)+k)(p(p-1)-k)
$$

Since $\operatorname{gcd}\left(p^{2}-p+\alpha, p^{2}-p+k\right)\left|(\alpha-k), \operatorname{gcd}\left(p^{2}-p+\alpha, p^{2}-p-k\right)\right|(\alpha+k)$,

$$
p(p-1)+\alpha \mid \alpha^{2}-k^{2}
$$

Note that

$$
\begin{aligned}
\left|\alpha^{2}-k^{2}\right| & \leq p^{2} \\
|p(p-1)+\alpha| & \geq p^{2}-p
\end{aligned}
$$

Therefore $\left|\alpha^{2}-k^{2}\right|=|p(p-1)+\alpha|$. Suppose $\alpha^{2}-k^{2}=p(p-1)+\alpha$, then $p(p-1)=\alpha^{2}-\alpha-k^{2}<p(p-1)$, which is a contradiction. Otherwise $k^{2}-\alpha^{2}=p(p-1)+\alpha$. Suppose $k \leq p-1$, then $p^{2}-p=k^{2}-\alpha^{2}-\alpha<p^{2}-p$, which is a contradiction. Let $k=p$, then $p=\alpha(\alpha+1)$. Since $\alpha>0$, it follows that $\alpha=m,\left(a_{1}^{\prime}, b_{1}^{\prime}\right)=\left(p^{2}, p^{2}-2 p\right),\left(a_{2}^{\prime}, b_{2}^{\prime}\right)=$ $\left(m^{3}(m+2),(m+1)^{3}(m-1)\right)$. To show $l^{\prime}>3$, consider $\left(a_{3}^{\prime}, b_{3}^{\prime}\right)=\left(m^{4}+2 m^{3}+m^{2}-1, m^{4}+2 m^{3}-m^{2}-2 m\right)$, $\left(a_{4}^{\prime}, b_{4}^{\prime}\right)=\left(m^{4}+2 m^{3}-m, m^{4}+2 m^{3}-m-2\right)$.

3 Number of Product nodes

To find whether there are infinitely many n such that the observer is able to determine the pair of numbers after hearing 4 'NO' before the first 'YES,' an estimation on the number of product nodes in $G(n)$ is required. By the unique factorization theorem, any positive integer can be uniquely expressed as $p_{1} p_{2} \ldots p_{m}$, where p_{i} primes, $p_{i} \leq p_{i+1}$. A product node $p_{1} p_{2} \ldots p_{m}$ exists in $G(n)$ if and only if $p_{1} p_{2} \ldots p_{m}=\left(p_{1}^{\prime} \ldots p_{a}^{\prime}\right)\left(q_{1}^{\prime} \ldots q_{b}^{\prime}\right)$ where $p_{i}^{\prime}, q_{i}^{\prime}$ primes, $p_{1}^{\prime} \ldots p_{a}^{\prime}, q_{1}^{\prime} \ldots q_{b}^{\prime} \leq n$.

In this section, let $\lfloor n\rfloor$ denote the largest prime less than or equal to n, and \sum_{a}^{b} sum over all primes p with $a \leq p \leq b$. In addition, let $\pi(n)$ denote the number of primes numbers less than or equal to n. The number of product nodes is counted by classifying a product node based on the number of primes m in its prime factorization. When $m=2$, the number of products nodes of the form $p_{1} p_{2}$ is

$$
\sum_{p_{1}=2}^{\lfloor n\rfloor} \sum_{p_{2}=p_{1}}^{\lfloor n\rfloor} 1=\sum_{p_{1}=2}^{\lfloor n\rfloor}\left(\pi(n)-\pi\left(p_{1}\right)+1\right)=\frac{\pi(n)(\pi(n)+1)}{2}
$$

Figure 4: Product nodes of form $p_{1} p_{2} \ldots p_{m}, m \leq 5$ in blue and actual number of product nodes in

When $m=3$, a product node of the form $p_{1} p_{2} p_{3}$ exists in $G(n)$ if and only if $p_{1} p_{2} \leq n$, $p_{3} \leq n$. Since $p_{1} \leq p_{2} \leq p_{3}$, we obtain $p_{1} \leq\lfloor\sqrt{n}\rfloor, p_{1} \leq p_{2} \leq\left\lfloor n / p_{1}\right\rfloor$, and $p_{2} \leq p_{3} \leq\lfloor n\rfloor$. Thus the number of product nodes of the form $p_{1} p_{2} p_{3}$ is

$$
\sum_{p_{1}=2}^{\lfloor\sqrt{n}\rfloor} \sum_{p_{2}=p_{1}}^{\left\lfloor n / p_{1}\right\rfloor} \sum_{p_{3}=p_{2}}^{\lfloor n\rfloor} 1=\frac{1}{2} \sum_{p_{1}=2}^{\lfloor\sqrt{n}\rfloor}\left[2 \pi(n)+2-\pi\left(\frac{n}{p_{1}}\right)-\pi\left(p_{1}\right)\right]\left[\pi\left(\frac{n}{p_{1}}\right)-\pi\left(p_{1}\right)+1\right]
$$

The number of product nodes when $m=4$ and $m=5$ are similarly determined as in Appendix. Figure 4 plots the product nodes of form $p_{1} p_{2} \ldots p_{m}, m \leq 5$ and the total number of product nodes.

Alternatively, the number of product nodes can be estimated with the prime number theorem. Since numbers of the form $p_{1} p_{2}$ cannot be a product node in $G(n)$, where $p_{1} \geq n$ is a prime, the number of product nodes is estimated to be

$$
n^{2}-\int_{n}^{n^{2}} \frac{1}{\ln p} \frac{n^{2}}{p} d p \approx(1-\ln 2) n^{2}
$$

4 Infinitely many n such that $O(n, 4)=Y$

In this section we prove that under certain assumptions, there are infinitely many n such that an observer is able to determine the pair of numbers (p, q) after hearing 4 'NO' before the first 'YES' in a sum-and-product game of n.

Definition 9. $C_{n}=\{(p, q) \mid(p, q)$ involves 4 NO be fore the first $Y E S$ in a sum and product game of $n,(p, q) \neq$ $(4,4)\}$.

Definition 10. A pair (p, q) appears at $\tau_{1}(p, q)$ if $\tau_{1}(p, q)$ is the least integer such that $(p, q) \in C_{\tau_{1}(p, q)}$.
Definition 11. A pair (p, q) disappears at $\tau_{2}(p, q)+1$ if $\tau_{2}(p, q)$ is the greatest integer such that $(p, q) \in C_{\tau_{2}(p, q)}$.
Lemma 10. Every pair (p, q) of length $l \geq 2$ apart from $(6,4),(8,2),(4,4),(6,2)$ and $(4,3)$ eventually disappears.
Proof. Suppose the pair has length $l \geq 2$. By Theorem and Corollary, there is either a sum tail or a product tail T of length l with $\left(a_{1}, b_{1}\right)=(p, q)$. Suppose $m=a_{l}+b_{l} \geq 11$, then $m=(4)+(m-4)=(6)+(m-6)$, where $4 \neq m-6$, and $(4)(m-4)=(2)(2 m-8),(6)(m-6)=(3)(2 m-12)$. Therefore the pair disappears when $n \geq 2 m-12$.

Suppose a pair (p, q) of length $l \leq 2$ never disappears, then $a_{l}+b_{l}<8$. By observing Figure X , the only pairs (p, q) are $(6,4),(8,2),(4,4),(6,2)$ and $(4,3)$.

Lemma 11. $\tau_{2}(p, q)$ is well-defined and $(p, q) \in C_{\tau}$ for every $\tau_{1}(p, q) \leq \tau \leq \tau_{2}(p, q)$.
Proof. Since only new edges are added and no edges are removed as n increases, a pair of a certain length cannot reappear after it disappears.

Definition 12. The total number of pairs of length four under $n=M$ is

$$
\begin{aligned}
T N_{M} & =\sum_{n=2}^{M-1} \sum_{(p, q) \in C_{n}} \frac{1}{\tau_{2}(p, q)-\tau_{1}(p, q)} \mathbb{1}_{\tau_{2}(p, q)<M} \\
& =\left|\left(C_{2} \cup C_{3} \cup \ldots \cup C_{M-1}\right) \cap\left\{(p, q) \mid \tau_{2}(p, q)<M\right\}\right|
\end{aligned}
$$

where $\mathbb{1}_{\tau_{2}(p, q)<M}=1$ if $\tau_{2}(p, q)<M$ and $\mathbb{1}_{\tau_{2}(p, q)<M}=0$ otherwise.
Definition 13. The number of pairs of length four under $n=M$ with another pair of length four at $\tau_{2}(p, q)+1$ is

$$
A C_{M}=\sum_{n=2}^{M-1} \sum_{(p, q) \in C_{n}} \frac{1}{\tau_{2}(p, q)-\tau_{1}(p, q)} \mathbb{1}_{C_{\tau_{2}(p, q)+1} \neq \emptyset}
$$

where $\mathbb{1}_{C_{\tau_{2}(p, q)+1} \neq \emptyset}=1$ if $C_{\tau_{2}(p, q)+1} \neq \emptyset$ and $\mathbb{1}_{C_{\tau_{2}(p, q)+1} \neq \emptyset}=0$ otherwise.
To prove that there are infinitely many n such that $O(4, n)=Y$, it suffices to prove that there are infinitely many pairs (p, q) of length four such that there is no other pair $\left(p^{\prime}, q^{\prime}\right)$ of length four where $\left(p^{\prime}, q^{\prime}\right) \in C_{\tau_{2}(p, q)+1}$. Since every pair of length four eventually disappears, it is possible to only consider pairs (p, q) such that there is no other pair $\left(p^{\prime}, q^{\prime}\right)$, $\tau_{1}\left(p^{\prime}, q^{\prime}\right) \leq \tau_{1}(p, q), \tau_{2}\left(p^{\prime}, q^{\prime}\right) \geq \tau_{2}(p, q)$. Equivalently, we hope to prove

$$
\lim _{M \rightarrow \infty} \frac{A C_{M}}{T N_{M}}<1
$$

We first prove a lemma in order to prove the above theorem.
Lemma 12. Let C_{n} be defined as above, then under certain assumptions of independence $\lim _{n \rightarrow \infty} \frac{\left|C_{n-1} \cap C_{n}^{c}\right|}{\left|C_{n-1}\right|} \geq \frac{5}{9}$.
Proof. Consider a pair (p, q) of length four, with its corresponding product tail $T=\left(a_{i}, b_{i}\right)$ of length four by Corollary 1. Note that (p, q) disappears at $n=\tau_{2}(p, q)+1$ if and only if n is the smallest integer such that there is a product path P^{\prime} of length greater than four with $\left(a_{1}^{\prime}, b_{1}^{\prime}\right)=(p, q)$ in $G(n)$. Let (p, q) be a pair of length four in the game of $n-1$ and P^{\prime} be a product path of length greater than four, then

$$
S_{k, n}=\left\{(p, q) \mid \exists P^{\prime}=\left(a_{i}^{\prime}, b_{i}^{\prime}\right) \in G(n),\left(a_{1}^{\prime}, b_{1}^{\prime}\right)=(p, q),\left(a_{j}^{\prime}, b_{j}^{\prime}\right) \in G(n-1) \forall j<k, a_{k}^{\prime}=n\right\}
$$

Since $a_{k}^{\prime}=n$ for some $2 \leq k \leq 5, C_{n-1} \cap C_{n}^{c}=S_{2, n} \cup S_{3, n} \cup S_{4, n} \cup S_{5, n}$. Consider

$$
\frac{\left|C_{n-1} \cap C_{n}^{c}\right|}{\left|C_{n-1}\right|}=\frac{\left|S_{2, n} \cup S_{3, n} \cup S_{4, n} \cup S_{5, n}\right|}{\left|C_{n-1}\right|}
$$

To approximate $\frac{\left|S_{3, n}\right|}{\left|C_{n-1}\right|}$ as $n \rightarrow \infty$, note that a pair $(p, q) \in C_{n-1}$ satisfies $(p, q) \in S_{3, n}$ only if n is a factor of $a_{2} b_{2}$. Assuming that the product node $a_{2} b_{2}$ is randomly chosen from all product nodes in $G(n-1)$ and considering that n is a factor of approximately $\frac{(1-\ln (2))(n-1)^{2}}{n}$ in $G(n-1)$, the probability that n is a factor of $a_{2} b_{2}$ is

$$
\begin{aligned}
\mathbb{P}\left(n \mid a_{2} b_{2}\right) & \approx \frac{1}{(1-\ln (2))(n-1)^{2}} \frac{(1-\ln (2))(n-1)^{2}}{n} \\
& =\frac{1}{n}
\end{aligned}
$$

Therefore $\frac{\left|S_{3, n}\right|}{\left|C_{n-1}\right|} \rightarrow 0$ as $n \rightarrow \infty$, and similarly $\frac{\left|S_{5}\right|}{\left|C_{n-1}\right|} \rightarrow 0$ as $n \rightarrow \infty$. It is therefore appropriate to consider

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|C_{n-1} \cap C_{n}^{c}\right|}{\left|C_{n-1}\right|} & =\lim _{n \rightarrow \infty} \frac{\left|S_{2, n} \cup S_{3, n} \cup S_{4, n} \cup S_{5, n}\right|}{\left|C_{n-1}\right|} \\
& \geq \lim _{n \rightarrow \infty} \frac{\left|S_{2, n} \cup S_{4, n}\right|}{\left|C_{n-1}\right|} \\
& =\lim _{n \rightarrow \infty}\left(\frac{\left|S_{2, n}\right|}{\left|C_{n-1}\right|}+\frac{\left|S_{4, n}\right|}{\left|C_{n-1}\right|}-\frac{\left|S_{2, n} \cap S_{4, n}\right|}{\left|C_{n-1}\right|}\right)
\end{aligned}
$$

To approximate $\frac{\left|S_{2, n}\right|}{\left|C_{n-1}\right|}$ as $n \rightarrow \infty$, note that a pair $(p, q) \in C_{n-1}$ satisfies $(p, q) \in S_{2, n}$ if and only if the product node $(n)(p+q-n)$ is in $G(n-1)$ and there exists a product path $P^{\prime \prime} \in G(n-1), l\left(P^{\prime \prime}\right) \geq 3$ with $\left(a_{1}^{\prime \prime}, b_{1}^{\prime \prime}\right)=(u, v)$, $u v=(n)(p+q-n)$. Let $K(n)$ be the set of product nodes in $G(n)$, and

$$
J(n)=\left\{x \in K(n) \mid \exists P^{\prime \prime} \in G(n-1), l\left(P^{\prime \prime}\right) \geq 3, a_{1}^{\prime \prime} b_{1}^{\prime \prime}=x\right\}
$$

where $P^{\prime \prime}$ is a product path, then $|J(n)|=|K(n)|-o(n)$. Suppose the product node $(n)(p+q-n)$ is randomly chosen from all product nodes that are a multiple of n in $G(n)$, then

$$
\begin{aligned}
\frac{\left|S_{2, n}\right|}{\left|C_{n-1}\right|} & =\frac{|\{x|x \in J(n), n| x\}|}{\left|\left\{x \mid x \in K(n) \cap K^{c}(n-1)\right\} \sqcup\{x|x \in K(n-1), n| x\}\right|} \\
& \approx \frac{\frac{(1-\ln (2)) n^{2}}{n}-o(n)}{(1-\ln (2))\left(n^{2}-(n-1)^{2}\right)+\frac{(1-\ln (2))(n-1)^{2}}{n}} \\
& \rightarrow \frac{1}{3}
\end{aligned}
$$

Similarly to approximate $\frac{\left|S_{4, n}\right|}{\left|C_{n}\right|}$, note that a pair $(p, q) \in C_{n-1}$ satisfies $(p, q) \in S_{4, n}$ if the product node $(n)(p+q-n)$ is in $G(n-1)$. Suppose the product node $(n)(p+q-n)$ is randomly chosen from all product nodes that are a multiple of n in $G(n)$,

$$
\begin{aligned}
\frac{\left|S_{4, n}\right|}{\left|C_{n-1}\right|} & =\frac{|\{x|x \in K(n-1), n| x\}|}{\left|\left\{x \mid x \in K(n) \cap K^{c}(n-1)\right\} \sqcup\{x|x \in K(n-1), n| x\}\right|} \\
& \approx \frac{\frac{(1-\ln (2))(n-1)^{2}}{n}}{(1-\ln (2))\left(n^{2}-(n-1)^{2}\right)+\frac{(1-\ln (2))(n-1)^{2}}{n}} \\
& \rightarrow \frac{1}{3}
\end{aligned}
$$

Conjecture 1. $S_{2, n}$ and $S_{4, n}$ are independent, and $\left.\frac{\left|S_{2, n} \cap S_{4, n}\right|}{\left|C_{n-1}\right|}=\frac{\left|S_{2, n}\right|}{\left|C_{n-1}\right|} \right\rvert\, \frac{\left|S_{4, n}\right|}{\left|C_{n-1}\right|}$
Assuming independence between $S_{2, n}$ and $S_{4, n}$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|C_{n-1} \cap C_{n}^{c}\right|}{\left|C_{n-1}\right|} & \geq \lim _{n \rightarrow \infty} \frac{\left|S_{2, n}\right|+\left|S_{4, n}\right|-\left|S_{2, n} \cap S_{4, n}\right|}{\left|C_{n-1}\right|} \\
& =\frac{1}{3}+\frac{1}{3}-\frac{1}{9} \\
& =\frac{5}{9}
\end{aligned}
$$

Corollary 3. Let C_{n} be defined as above, then $\lim _{n \rightarrow \infty} \frac{\left|C_{n-1} \cap C_{n}\right|}{\left|C_{n-1}\right|} \leq \frac{4}{9}$.

Theorem 4.1. Let $A C_{M}, T N_{M}$ be defined as above, then $\lim _{M \rightarrow \infty} \frac{A C_{M}}{T N_{M}}<1$.
Proof. Given $a<b$, let

$$
\begin{aligned}
C_{(a, b)} & =C_{a}^{c} \cap C_{a+1} \cap \ldots \cap C_{b-1} \cap C_{b}^{c} \\
C_{(a, b]} & =C_{a}^{c} \cap C_{a+1} \cap \ldots \cap C_{b-1} \cap C_{b}
\end{aligned}
$$

Consider

$$
\frac{A C_{M}}{T N_{M}}=\frac{1}{T N_{M}} \sum_{k=1} \sum_{j=2}^{M-k}\left|C_{(j-1, j+k)}\right| \mathbb{1}\left(\bigsqcup_{m=j+1}^{j+k} C_{(m-1, j+k]} \neq \emptyset\right)
$$

Taking limit of both sides,

$$
\begin{aligned}
\lim _{M \rightarrow \infty} \frac{A C_{M}}{T N_{M}} & =\lim _{M \rightarrow \infty} \frac{1}{T N_{M}} \sum_{k=1} \sum_{j=2}^{M-k}\left|C_{(j-1, j+k)}\right| \mathbb{1}\left(\bigsqcup_{m=j+1}^{j+k} C_{(m-1, j+k]} \neq \emptyset\right) \\
& =\lim _{M \rightarrow \infty} \frac{1}{T N_{M}} \sum_{k=1} \sum_{j=2}^{M-k}\left[\lim _{j^{\prime} \rightarrow \infty}\left|C_{\left(j^{\prime}-1, j^{\prime}+k\right)}\right|\right]\left[\lim _{j^{\prime} \rightarrow \infty} \mathbb{1}\left(\bigsqcup_{m=j^{\prime}+1}^{j^{\prime}+k} C_{\left(m-1, j^{\prime}+k\right]} \neq \emptyset\right)\right]
\end{aligned}
$$

Conjecture 2. C_{i} are independent, and $\frac{\left|C_{(a, b)}\right|}{\left|C_{(a, b-1]}\right|}=\frac{\left|C_{b-1} \cap C_{b}\right|}{\left|C_{b-1}\right|}$.
Under this assumption, we obtain

$$
\begin{aligned}
\left|C_{(j-1, j+k)}\right| & =\left|C_{j-1}^{c} \cap C_{j}\right|\left[\prod_{l=1}^{k-1} \frac{\left|C_{(j-1, j+l]}\right|}{\left|C_{(j-1, j+l-1]}\right|}\right] \frac{\left|C_{(j-1, j+k)}\right|}{\left|C_{(j-1, j+k-1]}\right|} \\
& =\left|C_{j-1}^{c} \cap C_{j}\right|\left[\prod_{l=1}^{k-1} \frac{\left|C_{j+l-1} \cap C_{j+l}\right|}{\left|C_{j+l-1}\right|}\right]\left(1-\frac{\left|C_{j+k-1} \cap C_{j+k}\right|}{\left|C_{j+k-1}\right|}\right)
\end{aligned}
$$

Conjecture 3. For random $j \geq n, \mathbb{E}\left(\left|C_{j-1}^{c} \cap C_{j}\right|\right) \leq 1$ as $n \rightarrow \infty$.
Taking limit of both sides,

$$
\begin{aligned}
\lim _{j \rightarrow \infty}\left|C_{(j-1, j+k)}\right| & =\lim _{j \rightarrow \infty}\left\{\left|C_{j-1}^{c} \cap C_{j}\right|\left[\prod_{l=1}^{k-1} \frac{\left|C_{j+l-1} \cap C_{j+l}\right|}{\left|C_{j+l-1}\right|}\right]\left(1-\frac{\left|C_{j+k-1} \cap C_{j+k}\right|}{\left|C_{j+k-1}\right|}\right)\right\} \\
& =\lim _{j \rightarrow \infty}\left|C_{j-1}^{c} \cap C_{j}\right|\left[\prod_{l=1}^{k-1} \lim _{j \rightarrow \infty} \frac{\left|C_{j+l-1} \cap C_{j+l}\right|}{\left|C_{j+l-1}\right|}\right] \lim _{j \rightarrow \infty}\left(1-\frac{\left|C_{j+k-1} \cap C_{j+k}\right|}{\left|C_{j+k-1}\right|}\right) \\
& =\lim _{j \rightarrow \infty}\left\{\left|C_{j-1}^{c} \cap C_{j}\right| R^{k-1}(1-R)\right\}
\end{aligned}
$$

where $R=\lim _{n \rightarrow \infty} \frac{\left|C_{n-1} \cap C_{n}\right|}{\left|C_{n-1}\right|}$ and the limit is finite. We further note that

$$
\begin{aligned}
\mathbb{1}\left(\bigsqcup_{m=j+1}^{j+k} C_{(m-1, j+k]} \neq \emptyset\right) & \leq \sum_{m=j+1}^{j+k}\left|C_{(m-1, j+k]}\right| \\
& =\sum_{m=j+1}^{j+k}\left|C_{m-1}^{c} \cap C_{m}\right|\left[\prod_{l=m}^{j+k} \frac{\left|C_{(m-1, l]}\right|}{\left|C_{(m-1, l-1]}\right|}\right] \\
& =\sum_{m=j+1}^{j+k}\left|C_{m-1}^{c} \cap C_{m}\right|\left[\prod_{l=m}^{j+k} \frac{\left|C_{l-1} \cap C_{l}\right|}{\left|C_{l-1}\right|}\right]
\end{aligned}
$$

Considering $C_{(m-1, j+k]}$ as random variables, we take limit of expectation of both sides,

$$
\begin{aligned}
\lim _{j \rightarrow \infty} \mathbb{P}\left(\bigsqcup_{m=j+1}^{j+k} C_{(m-1, j+k]} \neq \emptyset\right) & \leq \lim _{j \rightarrow \infty}\left\{\sum_{m=j+1}^{j+k}\left|C_{m-1}^{c} \cap C_{m}\right|\left[\prod_{l=m}^{j+k} \frac{\left|C_{l-1} \cap C_{l}\right|}{\left|C_{l-1}\right|}\right]\right\} \\
& \leq \lim _{j \rightarrow \infty}\left\{\sum_{m=j+1}^{j+k}\left[\prod_{l=m}^{j+k} \frac{\left|C_{l-1} \cap C_{l}\right|}{\left|C_{l-1}\right|}\right]\right\} \\
& =\sum_{m=j+1}^{j+k}\left[\prod_{l=m}^{j+k} \lim _{m \rightarrow \infty} \frac{\left|C_{l-1} \cap C_{l}\right|}{\left|C_{l-1}\right|}\right] \\
& =R \frac{1-R^{k}}{1-R}
\end{aligned}
$$

Therefore an upper bound for $\lim _{M \rightarrow \infty} \frac{A C_{M}}{T N_{M}}$ is obtained

$$
\begin{aligned}
\lim _{M \rightarrow \infty} \frac{A C_{M}}{T N_{M}} & \leq \lim _{M \rightarrow \infty} \sum_{k=1} \frac{1}{T N_{M}} \sum_{j=2}^{M-k}\left[\lim _{j^{\prime} \rightarrow \infty}\left|C_{j^{\prime}-1}^{c} \cap C_{j^{\prime}}\right| R^{k-1}(1-R)\right]\left(R \frac{1-R^{k}}{1-R}\right) \\
& =\sum_{k=1} R^{k-1}(1-R)\left(R \frac{1-R^{k}}{1-R}\right) \lim _{M \rightarrow \infty}\left\{\sum_{k=1} \frac{1}{T N_{M}} \sum_{j=2}^{M-k}\left|C_{j-1}^{c} \cap C_{j}\right|\right\} \\
& =\sum_{k=1} R^{k-1}(1-R)\left(R \frac{1-R^{k}}{1-R}\right) \\
& =\frac{R}{1-R^{2}}
\end{aligned}
$$

By Corollary $3 R=\lim _{n \rightarrow \infty} \frac{\left|C_{n-1} \cap C_{n}\right|}{\left|C_{n-1}\right|} \leq \frac{4}{9}$. Therefore $\lim _{M \rightarrow \infty} \frac{A C_{M}}{T N_{M}}<1$.

4.1 Conjecture

By observing $G(n)$ for various n, we propose two conjectures of the tail $T=\left(a_{i}, b_{i}\right)$ of the longest length l in $G(n)$.
Conjecture 4. It is very likely that $a_{l}+b_{l}>a_{l-1}+b_{l-1}$.
Conjecture 5. The asymptotic behavior of $a_{l}+b_{l}$ is that $a_{l}+b_{l} \sim 2 n$.

5 Appendix

We obtain expressions for the number of product nodes of the form $p_{1} p_{2} \ldots p_{m}, m=4,5$ and generalize to higher m. When $m=4$, a product node of the form $p_{1} p_{2} p_{3} p_{4}$ exists in $G(n)$ if and only if $p_{2} p_{3} \leq n$ and $p_{1} p_{4} \leq n$, or $p_{1} p_{2} p_{3} \leq n$ and $p_{4} \leq n$.

1. $p_{2} p_{3} \leq n$ and $p_{1} p_{4} \leq n$

$$
\sum_{p_{1}=2}^{\lfloor\sqrt{n}\rfloor} \sum_{p_{2}=p_{1}}^{\lfloor\sqrt{n}\rfloor} \sum_{p_{3}=p_{2}}^{\left\lfloor\frac{n}{p_{2}}\right\rfloor} \sum_{p_{4}=p_{3}}^{\left\lfloor\frac{n}{p_{3}}\right\rfloor} 1=\frac{1}{2} \sum_{p_{1}=2}^{\lfloor\sqrt{n}\rfloor} \sum_{p_{2}=p_{1}}^{\lfloor\sqrt{n}\rfloor}\left[\left(2 \pi\left(\frac{n}{p_{1}}\right)+2-\pi\left(p_{2}\right)-\pi\left(\frac{n}{p_{2}}\right)\right]\left[\pi\left(\frac{n}{p_{2}}\right)-\pi\left(p_{2}\right)+1\right]\right.
$$

2. $p_{1} p_{2} p_{3} \leq n$ and $p_{4} \leq n$

To avoid double-counting, we count the number of product nodes such that (2) is satisfied but (1) is not satisfied.

This is equivalent to the conditions $p_{1} p_{2} p_{3} \leq n$ and $\frac{n}{p_{1}}<p_{4} \leq n$. Since $p_{3} \leq \frac{n}{p_{1}}$, for a fixed p_{1} the choices of (p_{1}, p_{2}, p_{3}) and p_{4} are independent. Therefore we have

$$
\sum_{p_{1}=2}^{\lfloor\sqrt[3]{n}\rfloor}\left[\left(\sum_{p_{2}=p_{1}}^{\left\lfloor\sqrt{\frac{n}{p_{1}}}\right\rfloor} \sum_{p_{3}=p_{2}}^{\left\lfloor\frac{n}{p_{1} p_{2}}\right\rfloor} 1\right)\left(\sum_{p_{4}=\frac{n}{p_{1}}+1}^{\lfloor n\rfloor} 1\right)\right]=\sum_{p_{1}=2}^{\lfloor\sqrt[3]{n}\rfloor}\left[\left(\sum_{p_{2}=p_{1}}^{\left.\left\lfloor\sqrt{\frac{n}{p_{1}}}\right\rfloor \frac{n}{p_{1} p_{1}}\right\rfloor} \sum_{p_{3}=p_{2}} 1\right)\left(\pi(n)-\pi\left(\frac{n}{p_{1}}+1\right)\right)\right]
$$

When $m=5$, a product node of form $p_{1} p_{2} p_{3} p_{4} p_{5}$ can be written as the product of two numbers $(a, b), a, b \leq n$ in $\binom{5}{1}+\binom{5}{2}=15$ ways.

$$
\begin{aligned}
& \left(p_{1} p_{2} p_{3}, p_{4} p_{5}\right),\left(p_{1} p_{2} p_{4}, p_{3} p_{5}\right),\left(p_{1} p_{2} p_{5}, p_{3} p_{4}\right),\left(p_{1} p_{3} p_{4}, p_{2} p_{5}\right),\left(p_{2} p_{3} p_{4}, p_{1} p_{5}\right) \\
& \left(p_{1} p_{3} p_{5}, p_{2} p_{4}\right),\left(p_{1} p_{4} p_{5}, p_{2} p_{3}\right),\left(p_{2} p_{3} p_{5}, p_{1} p_{4}\right),\left(p_{2} p_{4} p_{5}, p_{1} p_{3}\right),\left(p_{3} p_{4} p_{5}, p_{1} p_{2}\right) \\
& \left(p_{2} p_{3} p_{4} p_{5}, p_{1}\right),\left(p_{1} p_{3} p_{4} p_{5}, p_{2}\right),\left(p_{1} p_{2} p_{4} p_{5}, p_{3}\right),\left(p_{1} p_{2} p_{3} p_{5}, p_{4}\right),\left(p_{1} p_{2} p_{3} p_{4}, p_{5}\right)
\end{aligned}
$$

We note that every pair in the second lines implies a pair in the first line. For example, $p_{1} p_{4} p_{5} \leq n, p_{2} p_{3} \leq n$ implies $p_{1} p_{2} p_{3} \leq n, p_{4} p_{5} \leq n$. In addition, every pair in the last line implies the last pair in the last line.

1. $\left(p_{1} p_{2} p_{3}, p_{4} p_{5}\right)$

$$
\sum_{p_{1}=2}^{\lfloor\sqrt[3]{n}\rfloor} \sum_{p_{2}=p_{1}}^{\left\lfloor\sqrt{\left.\frac{n}{p_{1}}\right\rfloor} \sum_{p_{3}=p_{2}}^{\left\lfloor\frac{n}{p_{1} p_{2}}\right\rfloor} \sum_{p_{4}=p_{3}}^{\lfloor\sqrt{n}\rfloor} \sum_{p_{5}=p_{4}}^{\left\lfloor\frac{n}{p_{4}}\right\rfloor} 1\right.} 1
$$

2. $\left(p_{1} p_{2} p_{4}, p_{3} p_{5}\right)$
$p_{1} p_{2} p_{4} \leq n, \frac{n}{p_{4}}<p_{5} \leq \frac{n}{p_{3}}$

$$
\sum_{p_{1}=2}^{\lfloor\sqrt[3]{n}\rfloor} \sum_{p_{2}=p_{1}}^{\left\lfloor\sqrt{\frac{n}{p_{1}}}\right.} \sum_{p_{3}=p_{2}}^{\lfloor\sqrt{n}\rfloor} \sum_{p_{4}=p_{3}}^{\left\lfloor\frac{n}{p_{1} p_{2}}\right\rfloor} \sum_{p_{5}=\max \left(p_{4} \frac{n}{p_{4}}+1\right)}^{\left\lfloor\frac{n}{p_{3}}\right\rfloor} 1
$$

3. $\left(p_{1} p_{2} p_{5}, p_{3} p_{4}\right)$
$p_{3} p_{4} \leq n, \frac{n}{p_{3}}<p_{5} \leq \frac{n}{p_{1} p_{2}}$

$$
\sum_{p_{1}=2}^{\lfloor\sqrt[3]{n}\rfloor} \sum_{p_{2}=p_{1}}^{\left\lfloor\sqrt{p_{1}}\right\rfloor} \sum_{p_{3}=p_{2}}^{\lfloor\sqrt{n}\rfloor} \sum_{p_{4}=p_{3}}^{\left\lfloor\frac{n}{p_{3}}\right\rfloor} \sum_{p_{5}=\max \left(p_{4}, \frac{n}{p_{3}}+1\right)}^{\left\lfloor\frac{n}{p_{1} p_{2}}\right.} 1
$$

4. $\left(p_{1} p_{3} p_{4}, p_{2} p_{5}\right)$
$p_{1} p_{3} p_{4} \leq n, \frac{n}{p_{3}}<p_{5} \leq \frac{n}{p_{2}}, n<p_{1} p_{2} p_{5}$.

$$
\sum_{p_{1}=2}^{\lfloor\sqrt[3]{n}\rfloor} \sum_{p_{2}=p_{1}}^{\lfloor\sqrt{n}\rfloor} \sum_{p_{3}=p_{2}}^{\left\lfloor\sqrt{\frac{n}{p_{1}}}\right.} \sum_{p_{4}=p_{3}}^{\left\lfloor\frac{n}{p_{1} p_{3}}\right\rfloor} \sum_{p_{5}=\max \left(p_{4}, \frac{n}{p_{3}}+1, \frac{n}{p_{1} p_{1}}+1\right)} 1
$$

5. $\left(p_{2} p_{3} p_{4}, p_{1} p_{5}\right)$
$p_{2} p_{3} p_{4} \leq n, \frac{n}{p_{2}}<p_{5} \leq \frac{n}{p_{1}}$

$$
\sum_{p_{1}=2}^{\lfloor\sqrt{n}\rfloor} \sum_{p_{2}=p_{1}}^{\lfloor\sqrt[3]{n}\rfloor} \sum_{p_{3}=p_{2}}^{\left\lfloor\sqrt{\frac{n}{p_{2}}}\right\rfloor} \sum_{p_{4}=p_{3}}^{\left\lfloor\frac{n}{p_{2} p_{3}}\right\rfloor} \sum_{p_{5}=\max \left(p_{4}, \frac{n}{p_{2}}+1\right)}^{\left\lfloor\frac{n}{p_{1}}\right\rfloor} 1
$$

6. $\left(p_{1} p_{2} p_{3} p_{4}, p_{5}\right)$

The case occurs, without any of the above cases occurring, if and only if $p_{1} p_{5}>n$

$$
\sum_{p_{1}=2}^{\lfloor\sqrt[4]{n}\rfloor} \sum_{p_{2}=p_{1}}^{\left\lfloor\sqrt[3]{\frac{n}{p_{1}}}\right\rfloor} \sum_{p_{3}=p_{2}}^{\left\lfloor\sqrt{\frac{n}{p_{1} p_{2}}}\right\rfloor} \sum_{p_{4}=p_{3}}^{\left\lfloor\frac{n}{p_{1} p_{2} p_{3}}\right\rfloor} \sum_{p_{5}=\max \left(p_{4}, \frac{n}{p_{1}}+1\right)} 1
$$

5.1 Generalization to Higher m

Let the product be $p_{1} p_{2} \ldots p_{m}$ in $G(n)$.

1. The number of ways $p_{1} p_{2} \ldots p_{m}$ can be written as the product of two numbers $(a, b), a, b \leq n$ is $2^{m-1}-1$.
2. Some cases may include other cases. For example, $\left(\prod_{i=1}^{m-1} p_{i}, p_{m}\right)$ includes $\left(\prod_{\substack{i=1 \\ i \neq j}}^{m} p_{i}, p_{j}\right)$.
3. Choose one case $\left(p_{r_{1}} p_{r_{2}} \ldots p_{r_{a}}, p_{s_{1}} p_{s_{2}} \ldots p_{s_{b}}\right), r_{i-1}<r_{i}, s_{i-1}<s_{i}$. Without loss of generality suppose $r_{a}<s_{b}$. The number of product nodes of this form is

$$
\sum_{p_{1}=2}^{n} \sum_{p_{2}=p_{1}}^{n} \cdots \sum_{p_{i}=p_{i-1}}^{n} \cdots \sum_{p_{r_{a}}=p_{r_{a}-1}}^{\frac{n}{p_{r_{1}} p_{r_{2}} \cdots p_{r_{a}-1}}} \cdots \sum_{p_{i}=p_{i-1}}^{n} \ldots \sum_{p_{s_{b}}=p_{s_{b}-1}}^{\frac{n}{p_{r_{1}} p_{r_{2}} \cdots p_{r_{b}-1}}}
$$

4. Suppose we calculated the number of product nodes of M forms and seek to calculate the additional number of product nodes of the $(M+1)$ th form. Inequalities of the $(M+1)$ th form are satisfied and at least one of the two conditions of each of the previous M forms is not satisfied. Therefore instead of summing p_{i} from p_{i-1}, we sum p_{i} from $\max \left(p_{i-1}, A_{1}, \ldots, A_{j}\right)$, where A represent inequalities not satisfied.
5. We seek an improved upper bound for summation of each of $p_{r_{i}}, p_{s_{i}}$. Consider $p_{r_{1}} p_{r_{2}} \ldots p_{r_{a}} \leq n$, then $p_{r_{i}} \leq$ $\sqrt[a+1-i]{\frac{n}{p_{r_{2}} \ldots p_{r_{i-1}}}}$. Similarly $p_{s_{i}} \leq \sqrt[b+1-i]{\frac{n}{p_{s_{2}} \ldots p_{s_{i-1}}}}$
6. To find the maximum for m, consider $2^{m} \leq n \Longleftrightarrow m \leq \log _{2}(n)$
