A Sum and Product Game
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Abstract

A sum-and-product game involves two numbers 2 < p, ¢ < n for fixed n as well as two participants, a sum
person who knows p + ¢ and a product person who knows pg. Starting from the sum person, the two participants
alternatively answer the dichotomous question of whether they know p and ¢. By identifying a game with a graph,
this paper examines various properties of the sum-and-product game, eventually proving that a certain independence
conjecture implies the conjecture that there are infinitely many n where an observer can determine p, q after hearing
exactly 4 NO before a YES.

1 Introduction

In a sum-and-product game of n, two numbers, not necessarily distinct, are chosen from the range of positive integers
greater than 1 and not greater than n. The sum of the two numbers is given to a sum person, and the product of the
two numbers is given to a product person. Starting from the sum person, the two participants alternatively answer the
question of whether they know the two numbers.

The game can be identified with a bipartite graph G(n) whose vertices consist of all possible sums and products, and
where each edge, representing a possible pair of numbers, connects their sum with their product. We deduce the nec-
essary and sufficient conditions on the structure of the graph centered around the sum node p + ¢ for a game with the
pair of numbers (p, q) to involve a certain number of ‘NO’ before the first ‘YES.’

We prove additional properties of G(n), and hence of the corresponding game. First, there is no path of length greater
than one starting from a sum node k if 1 4+ 2n — /1 + 4n < k < 2n. Secondly, if a pair of numbers involves [ ‘NO’
before the first ‘YES’ in a game of n, then for every I’ < [, there is a pair of numbers involving I’ ‘NO’ before the first
‘YES’ in a game of n. Thirdly, the pair of (4, 4) involves 4 ‘NO’ before the first “YES’ in a game of n if and only if n. > 8.

An observer is able to determine the pair of numbers (p, ¢) after hearing 4 ‘No’ before the first “YES’ if and only if there
is exactly one pair of numbers involving 4 ‘No’ before the first ‘YES’. Equivalently, when n > 8, there is no other pair
than (4,4) involving 4 ‘No’ before the first ‘YES’. We prove there are infinitely many n such that an observer cannot
determine the pair of numbers (p, q) after hearing 4 ‘No’ before the first “YES’ using an explicit construction. Under
certain assumptions of independence, we also prove there are infinitely many n such that an observer can determine
the pair of numbers (p, ¢) after hearing 4 ‘No’ before the first “YES’.

2 Properties of the sum-and-product game

A sum-and-product game of n can be identified with a graph G(n). In the example of G(12) in Figure 1, each edge
represents a possible pair (p, q), 2 < p, ¢ < n, and connects a square node of their product with a circle node of their
sum. Starting with definitions relating to the graph, we prove various properties of the graph and of its related game.



Figure 1: The graph G(12)

Definition 1. A sum path P of length | = [(P) in G(n) is two length | sequences a;,b; such that (Vi) a; # a;11,
a; > by, and (V1 < i < L) agibo; = agi—1boi—1, (V1 < i < 52) ag; + boy = agig1 + baitr.

Definition 2. A product path P of length | = [(P) in G(n) is two length | sequences a;, b; such that (Vi) a; # a;41,
a; > by, and (V1 < i < L) ag; + bo; = asi—1 + boi—1, (V1 <0 < 551 agibo; = agiy1baig.

Definition 3. A path P of length | in G(n) is either a sum path of length [ or a product path of length .
Definition 4. A cycle C of length l is a path of length [(C) satisfying a1b1 = a;b; or a1 + by = a; + b;.

Definition S. A sum tail of length | is a sum path T' = (a;, b;) of length | such that for every other sum path T = (@, b;)
of length I, where (d1,b1) = (a1,b1), I < L.

Definition 6. A product tail of length I is a product path T' = (a;, b;) of length | such that for every other product path
T = (a;,b;) of length I, where (a1,b1) = (a1,b1), I <.

Lemma 1. The length of a sum tail is odd. The length of a product tail is one or even.

Proof. Suppose to the contrary that the length of a sum tail T = (a;, b;) isl = 2m, then a;—1b;—1 = a;b;. fa;+b, =4
or a; + b; = 2n, then the pair has length one. Otherwise 3 (a;+1,b;+1) # (a, b;) such that a; + b; = aj+1 + bj+1, and
T = (a;,b;), 1 <i <1+ 1isasum path of length [ 4+ 1. Similarly the length of a product tail is one or even. O

Definition 7. A pair of numbers (p,q), ¢ < p < n, has length | in the sum-and-product game of n if (p, q) involves
NO before the first YES in the game of n. Let Cy ,, denote the set of pairs of numbers of length | in the game of n.

Theorem 2.1. A pair of numbers (p, q) has length | = 2m — 1 if and only if

o There is one sum tail of length | with (a1,b1) = (p, q)

o There is at least one other sum path of length I > l witha, + b, =p+q, a1 #p
A pair of numbers (p, q) has length | = 2m if and only if

o There is at least one sum tail of lengthl — 1 witha; + b1 =p+q, a1 #p

* There is one sum path of length I’ > 1 — 1 with (a},b}) = (p,q)

o There is no sum path of length 1" > 1 — 1witha! + b/ =p+q af #p



Figure 2: Examples of a pair (p, ¢) of length three (left) and a pair (p, ¢) of length four (right)

Proof. Let the sum person be named Alice and the product person be named Bob.

When [ = 1, Alice cannot differentiate (ay,b1) from (p, q) and says NO. Bob only has one way to decompose
his product and says YES. This results in a pair of length one. In the other direction, suppose there is no sum tail of
length 1 with (a1,b1) = (p, q), then Bob has more than one way to decompose his product and says the second NO.
Otherwise, suppose there is no sum path of length I’ > [ with a; + b1 = p + ¢, a1 # p. Then Alice only has one way
to decompose her sum, resulting in a pair of length zero.

When [ = 2, Alice cannot differentiate (a1, b1) from (p, ¢) and says NO. Bob cannot differentiate (a,b]) from
(ah, b5) and says NO. Alice knows the numbers must be (p, ¢), or else Bob only has one way to decompose his product
and would have said YES. This results in a pair of length two. In the other direction, suppose there is no sum path of
length I’ > 1 with (a},b]) = (p, q), then Bob only has one way to decompose his product, resulting in a pair of length
one. Suppose there is another sum path of length I > 1 with ¢ + b} = p + ¢, af # p, then after two NO Alice
cannot differentiate between (p, ¢) and af, b7, resulting in a pair of length more than two. Suppose there is no sum tail
of length 1 with a; + by = p + ¢, a1 # p, then Alice only has one way to decompose her sum, resulting in a pair of
length zero.

Suppose the statement is true for all [ < 2M — 2. When | = 2M — 1, the pair has length at least 2/ — 1 by
the induction hypothesis. After Alice says the (2M — 2)th NO, Bob knows the numbers must be (p, q), or else Alice
would have said YES by the induction hypothesis. This results in a pair of length 20/ — 1.

In the other direction, suppose there is no sum path of length I’ > [ with a; + by = p + ¢, a1 # p, and at most one
sum path of length [ with a; 4+ b1 = p + ¢, then by the induction hypothesis the pair has length smaller than 2M — 1.
Otherwise, suppose there is no sum tail of length [ with (ay,b;) = (p,q). If there is no sum path of length [ with
(a1,b1) = (p, q), then by the induction hypothesis the pair has length smaller than 2\ — 1. If there is a sum path of
length I > [ with (af, b}) = (p, ¢), then Bob cannot differentiate (a3, by) from (p, ¢) at the (2M — 1)th step.

When [ = 2M, the pair has length at least 2M by the induction hypothesis. After Bob says the (2M — 1)th NO,
Alice knows the numbers must be (p, ¢), or else Bob would have said YES by the induction hypothesis. This results in
a pair of length 2.

In the other direction, suppose there is no sum path of length I’ > I — 1 with (a}, b}) = (p, ¢), then by the induction
hypothesis the pair has length smaller than 20 —1. Suppose there is a sum path of length !” > [—1 with o +b] = p+q,
ay # p, then Alice cannot differentiate (a},b]) from (p, q) at the 2Mth step. Suppose there is no sum tail of length
I — 1 with a; + by = p+ g, a1 # p, then by the induction hypothesis the pair has length smaller than 20 — 1.

O

Corollary 1. A pair of numbers (p, q) has length I = 2m if and only if
o There is one product tail of length | with (a1,b1) = (p, q)
o There is at least one other product path of length I > | — 1 with a} b} = pg, a] # p

Lemma 2. A sum path P = (a;,b;) of length two, where a1 + by, = >, =3 < Y. = as + b, satisfies Y, <
2@2 + 0 — 2\/ 5(12



Proof. Consider
(a1 + b1)2 > 4ajag = 4asby
(2a2 — Z+5)2 =4a3 4 (a1 + b1)? — 4az(ay + b)) > dag(as + by —ay — by) = 46ay
203 + 0 — 2¢/0ay > )
O

Lemma 3. Given b, there is no sum path P = (a;,b;) of length greater than one with (a1,b1) = (b+ k,b — k) in
G(n), n < b+ Vb

Proof. Suppose (b + k)(b — k) = (b + k1)(b + k2), and without loss of generality k1 > ks. Then ky # 0, or else
b | k2 < b, and kq 7£ k, kq 7& —ko, orelse k1 = —koy = tk.

If b < k < /b, then ky > 0. Suppose to the contrary —vb < —k < ko < k1 < 0, then b2 — k2 > b> — b and
b2+ (kl +k2)b—|—k‘1/€2 < b? —b, contradicting (b+k)(b—]€) = (b+k1)(b—|—/€2) Then0 < k1 < k < \/E, —ko > kq
and (b + k1)(b+ ko) < b? — b — (kg — ky — 1)b — k1ko < b% — b, contradicting (b + k)(b — k) > b2 — b.

If0 < k < ky < v/b, then —ko < k; and by Lemma 2

20+ ki + ko <2(b+ k1) + k1 + ko — 2/ (b+ k1) (k1 + k2)
(b4 k1) (k1 + ko) < kF

k1ka
b

which is a contradiction. O

0<ky+k <— <1

Lemma 4. Given b, there is no sum path of length greater than one P = (a;,b;) with (a1,b1) = (b+k+1,0—k) in
Gn),n<b+vb—1

Proof. Suppose (b+k+1)(b—k) = (b+ k1)(b+ ko), and without loss of generality k1 > ko. Then k1 + ko > 0, or
else

b+k+1)(b—k)=b>+b—k— k>
>024+b—(Vb—1)— (Vb—1)?
=0>+Vb
> b?
> (b+k1)(b+ ko)
In addition k1 4+ ko # 1, orelse ky = —kork, =k + 1.

Suppose k1 < k+ 1 < v/b — 1. Therefore ki + ko — 1 > 0, and (b+k1)+ (b+ke) > (b+1)+b By Lemma2

2+ ki +ky <20b+k1)+ ki + ko —1—2/ (k1 + ko — 1)(b+ k1)
A(ky + ko — 1)(b+ k1) < 4kT + 1 — 4k
1 — dkyky
ol ="z
O0<ki+ko—1< m

Moreover,
1 — 4k ko 1= 4(vb—1)(2 — Vb)

4b 4b
<1




Therefore

1— 4k k
0<k1+k2—1§T12<1

which is a contradiction. O

Theorem 2.2. Given n, there is no sum path of length greater than one P = (a;, b;) with (a1,b1) = (b+ k,b—k) in
G(n), HZ"% VItIN p < n, or P = (a;,b;) with (a1,by) = (b+ k+ 1,b— k) in G(n), M”% VoHAn < b < .

Proof. By inverting the inequality in Lemma 3 and Lemma 4. O

Lemma 5. For a sum tail T = (a;,b;) of length I, every T' = (a},b.), 2k + 1 < i < lis a sum tail of length | — 2k

177

and every T' = (a},b}), 2k < i < lis a product tail of length | + 1 — 2k, where 1 < k < L.

(i

Proof. Consider T’ = (al,b}), 2k + 1 < i < I, a sum tail of length | — 2k where 1 < k < é Suppose to the

1)

contrary that there is a sum path T' = (a;, b;) of length [, where (a1,b1) = (a},b}) and [ > I. Then T" = (af, b)),

177

(a,07) = (a;,b;) for 1 < 5 <2k, (a},b)) = (@i—2k, bi—ax) for 2k + 1 < j <[+ 1is a sum path with length [ > [,

177

(a1,b1) = (af,bY), contradicting that T is a sum tail. Similarly every 7" = (a},b}), 2k < ¢ < [ is a product tail of

1) 7

lengthl 4+ 1 — 2k, where 1 < k < % O

Lemma 6. For a product tail T = (a;,b;) of length 1, every T' = (a;,b;), 2k < j < lis a sum tail of length | +1—2k
and every T' = (a;,b;), 2k — 1 < j < lis a product tail of length | + 2 — 2k, where 1 < k < 1771

Proof. Similar to the above. O
Theorem 2.3. If G(n) has a pair (p, q) of length l, it has another pair of length I’ for all ! < 1.

Proof. Suppose [ is odd, and let P = (a5, b;) be the sum path of length [ with (a1,b1) = (p, q), then (a1, bj41-1/)
is a pair of length I’ < [ by Lemma 5 and Theorem 2.1. Suppose [ is even, and let P = (a;, b;) be the product path of
length [ with (a1,b1) = (p, q), then (aj+1—y/, bj+1—1/) is a pair of length I’ < [ by Lemma 6 and Theorem 2.1. O

Lemma 7. Foralln > 12, (6,4) is a pair of length six in G(n).

Proof. Consider the sum path T of length five with (a1, b1) = (8,2), (az,b2) = (4,4), (a1,b1) = (6,2), (az,b2) =
(4,3), (ag,b3) = (5,2), witha; + b1 =8+2=7+3=6+4=5+5, (a1,b1) = (8,2) # (6,4). Then T is a sum
tail of length five since 16 =8 x 2 =4 x 4,12 =6 x 2 =4 x 3, 10 = 5 x 2 have no other factorization, 7 = 4 + 3
has no other partition, and 8 =6+ 2 =5+ 3 =4 + 4, 15 = 5 x 3 has no other factorization.

In addition, there is a sum path P’ of length six with (a},}) = (6,4), (a,b5) = (8,3), (a4, b5) = (9,2), (a}, b)) =
(6,3), (ak,b) = (5,4), (ag, bs) = (10,2). Consider all partitions of 10 = 8+2 =7+3 =6+4 = 5+ 5. For
any other sum path P” of length I” with o + b} = 6 + 4, a} # 4, it follows that (o + b}) = (7,3) or (5,5). Since
21 =7 x 3, 25 = 5 x 5 have no other factorization, {"’ = 1. O

Corollary 2. Foralln > 8, (4,4) is a pair of length four in G(n).

Definition 8. Ler O denote an observer of the game, then O(n,r) =Y if the observer is able to determine (p, q) where
there are r NO before a YES in a sum-and-product game of n. and O(n,r) = N if the observer is not able to determine
(p, q) where there are r NO before a YES in a sum-and-product game of n.

Lemma 8. O(n,r) =Y if and only if exactly one pair numbers has length r in the sum-and-product game of n.



(P>-1)(p-1)>+1)
(m4+2m3_m) m*+2m3-m
(m*+2m*-m-2) m*+2m3-m-2

Figure 3: The pair (p?, p?> — 2p) has length four in a game of n = p?, p = m(m + 1)

m*+2m3+m?-1

m*+2m3-m3-2m

(m+1)°(m-1)

Lemma 9. A sum path P given by (a1, b1) = (p(p—1),p(p — 1)), (a2, b2) = (p*, (p— 1)?), (as,b3) = (p* — 1, (p—
1)2 + 1) is a sum tail of length three in G (p?)

Proof. Consider ajb; = p?(p — 1)? = agbs, az + by = p*> + (p — 1) = az + bs, then P is a sum path. Consider
another sum path P’ = (a}, b}) of length I’ with (a}, b)) = (a1,b1) = (p(p — 1), p(p — 1)).

17 71

If (ab, bh) # (a2, b2) = (p?, (p—1)?),then (p—1)2 = by < by < b}, = by =p(p—1) = a1 = @} < ay < az = p*.
Since a1b; = ahbly = asby = p*(p — 1), we have 2p? — 2p = ay + by < ab + by < ag + by = 2p? — 2p + 1. This is
a contradiction since af, + b} is an integer.

If (ah, by) = (az,bs), we seek to show I’ < 3. Consider (a},b3) = (p* —p+1+k,p> —p—k),0<k<p-—2,
(afby) = @ —p+ap’ —p+Bla<p (P —p+1+k)@°—p—k) < (»*—p+a)’ Then

(P —p)* =K +p* —p—k < (p° —p)* + & + 2a(p® — p)
0§a2+2a(p2—p)+k2—p2+p+k

a>p-p)+VE?—p2+p2—p— k2 —k
>0

Consider a4bs = a}b), then af | ayb) and

PP-p+a | @®—p+1+k)@ —p—k)
Since ged(p? —p+a,p* —=p+1+k) [ (k+1—a), ged(p* —p+a,p> —p—k) | (k+a),

pPP—ptalk+l-—a)k+a)=k+k—0a®—a

Note thatif o <p—1

pPP-p<nV@—p+1+k)p2—p—k) <|p*—p+a
2 +k—a?—a|<(p-1>2*+@p-1)=p*—p

which is a contradiction. If & = p, then

P’k +k—p

This is a contradiction since |k? + k — p| < p? when 0 < k < p — 2. Therefore I’ < 3 and the sum path P is a sum
tail of length three in G (p?)
O



Theorem 2.4. There are infinitely many n such that O(n,4) = N.

Proof. By Lemma 8, it suffices to find another pair (p,q) # (4,4) of length four in G(n) for infinitely many n. By
Lemma 9, consider the sum tail of length three with (a1,b1) = (p(p—1),p(p—1)), p = m(m+1) in G(n). Consider
another sum path P’ of length I’ with a} + b, = 2p(p — 1), and without loss of generality let o} = p(p — 1) + k&,
bi=plp—1) —k1<k<p

Suppose I’ > 2, without loss of generality let (a5, b5) = (p(p — 1) + a,p(p — 1)+ B), a <p, (p(p—1) + k) (p(p —
1) — k) < (p(p—1) + a)®. Then

—k? <2a(p® —p) +o”

Since 2a(p? — p) + a? < —2p? +2p + 1 < —p? when p > 3, it follows that —p? < —k? < 2a(p? — p) +a? < —p?
when o« < —1. This is a contradiction, and o > 0. Consider

plp—1) +al(pE-1)+kpEpP-1) k)

Since ged(p? —p+a,p?> —p+ k)| (a — k), ged(p?> —p+a,p?> —p—k) | (o + k),

p(p—l)—i—oz|oz2—k;2

Note that

|Ol2—k2| §p2
lplp—1)+a| >p*—p

Therefore |a? —k?| = |p(p—1)+a|. Suppose a? —k? = p(p—1)+a, then p(p—1) = a? —a—k? < p(p—1), which
is a contradiction. Otherwise k2 —a? = p(p—1)+«. Suppose k < p—1, then p> —p = k? —a? —a < p? —p, which is
a contradiction. Let k = p, then p = a(a+1). Since a > 0, it follows that o = m, (a}, b)) = (p?, p?> —2p), (ah, b)) =
(m3(m+2), (m+1)3(m —1)). Toshow I’ > 3, consider (a4, b;) = (m* +2m> +m? — 1,m* + 2m3 — m? — 2m),
(a, b)) = (m* +2m3 —m,m* +2m> —m — 2).

O

3 Number of Product nodes

To find whether there are infinitely many n such that the observer is able to determine the pair of numbers after hearing
4°NO’ before the first "YES,” an estimation on the number of product nodes in G(n) is required. By the unique factor-
ization theorem, any positive integer can be uniquely expressed as p;ps...p,,, where p; primes, p; < p;+1. A product
node p1ps...py, exists in G(n) if and only if p1ps...pm = (p...p,)(q}...q;,) wWhere p}, ¢ primes, p!...p,, ¢}...q; < n.

In this section, let | n] denote the largest prime less than or equal to n, and EZ sum over all primes p witha < p < b.
In addition, let 7(n) denote the number of primes numbers less than or equal to n. The number of product nodes is
counted by classifying a product node based on the number of primes m in its prime factorization. When m = 2, the
number of products nodes of the form p;ps is

In]  (n] nJ
oD 1= Z(W(n)—w(pl)ﬂ):w

p1=2p2=p1 p1=2
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Figure 4: Product nodes of form p;ps...pp,, m < 5 in blue and actual number of product nodes in

When m = 3, a product node of the form p;pop3 exists in G(n) if and only if p;ps < n, p3 < n. Since p; < pa < ps,
we obtain p1 < |/n], p1 < p2 < |n/p1],and p; < p3 < |n|. Thus the number of product nodes of the form p; pap3
is

VAl ln/p1] (n) wa n "
Sy Y= 5 > [2w(n) +2 - 7r(p—1) — W(pl)][ﬂ(};) —m(p1) + 1]

P1=2 p2=p1 p3=p2 p1=2

The number of product nodes when m = 4 and m = 5 are similarly determined as in Appendix. Figure 4 plots the
product nodes of form pyps...pm, m < 5 and the total number of product nodes.

Alternatively, the number of product nodes can be estimated with the prime number theorem. Since numbers of the
form p;po cannot be a product node in G(n), where p; > n is a prime, the number of product nodes is estimated to be

n
n2 /
n

4 Infinitely many n such that O(n,4) =Y

1 2
—n—dpz

_ 2
np (1-1In2)n

In this section we prove that under certain assumptions, there are infinitely many n such that an observer is able to
determine the pair of numbers (p, ¢) after hearing 4 "NO’ before the first "YES’ in a sum-and-product game of n.

Definition 9. C,, = {(p, q) | (p, q) involves 4 NO beforethe firstY ES in a sum and product gameof n, (p,q) #
(4,4)}.

Definition 10. A pair (p, q) appears at T1(p, q) if T1(p, q) is the least integer such that (p, q) € Cr,(p.q)-

Definition 11. A pair (p, q) disappears at 12(p, q) + 1 if T2(p, q) is the greatest integer such that (p,q) € Cr,(p.q)-
Lemma 10. Every pair (p, q) of length I > 2 apart from (6,4), (8,2), (4,4), (6,2) and (4, 3) eventually disappears.

Proof. Suppose the pair has length [ > 2. By Theorem and Corollary, there is either a sum tail or a product tail T’
of length [ with (a1,b1) = (p,q). Suppose m = a; + by > 11, thenm = (4) + (m — 4) = (6) + (m — 6), where
4 # m—6,and (4)(m —4) = (2)(2m — 8), (6)(m — 6) = (3)(2m — 12). Therefore the pair disappears when
n > 2m — 12.

Suppose a pair (p, ¢) of length [ < 2 never disappears, then a; + b; < 8. By observing Figure X, the only pairs (p, q)
are (6,4), (8,2), (4,4), (6,2) and (4, 3). O



Lemma 11. 7(p, q) is well-defined and (p, q) € C; for every 71(p,q) < 7 < 72(p, q).

Proof. Since only new edges are added and no edges are removed as n increases, a pair of a certain length cannot
reappear after it disappears. O

Definition 12. The total number of pairs of length four under n = M is
=Y Y o
n=2 (p.q)eCh 1P, q

= |(CQ uCsu...U C]Wfl) n {(p, q) |7‘2(p7 q) < M}‘

]lrz(p7q)<M

where 1., y<r = 1if T2(p,q) < M and 1., (, )< pr = 0 otherwise.

Definition 13. The number of pairs of length four under n = M with another pair of length four at To(p, q) + 1 is

M-1
ACy = Z Z *Tl(p q) Lo, a0
n=2 (p,q)€Cxn

where 1o, 20 =1ifCrypg41 # 0 and Lc,, ) mia0 = 0 otherwise.

To prove that there are infinitely many n such that O(4,n) = Y, it suffices to prove that there are infinitely many pairs
(p, q) of length four such that there is no other pair (p’, ¢’) of length four where (p’, ¢') € C,(p,q)41- Since every pair
of length four eventually disappears, it is possible to only consider pairs (p, ¢) such that there is no other pair (p’, ¢’),
(0, qd") <m1(p,q), =(p',q¢") > 12(p, q). Equivalently, we hope to prove

. ACy
lim

<1
M —o00 TNM

We first prove a lemma in order to prove the above theorem.

Lemma 12. Let C,, be defined as above, then under certain assumptions of independence lim,, % > g.

Proof. Consider a pair (p, ¢) of length four, with its corresponding product tail T' = (a;, b;) of length four by Corollary
1. Note that (p, q) disappears at n. = 72(p, ¢) + 1 if and only if n is the smallest integer such that there is a product path
P’ of length greater than four with (a},b}) = (p,q) in G(n). Let (p, q) be a pair of length four in the game of n — 1
and P’ be a product path of length greater than four, then

Sk =A{(p,q) |3P" = (a;, b)) € G(n), (ay,0}) = (p,q), (a},b)) € G(n —1)Vj <k, aj, = n}

VA

Since aj, = nforsome 2 < k <5, C,,—1 NCE = S5, U S5, U Sy, US5,,. Consider

|Cr1 NCF] |82, U S35 U Sy, USs
‘Cnfll |Cn71|

To approximate ||C “ as m — oo, note that a pair (p, ¢) € C,,_ satisfies (p, g) € Ss,, only if n is a factor of asbs.

Assuming that the product node asbs is randomly chosen from all product nodes in G(n — 1) and considering that n

(1-In(2))(n—1)2

is a factor of approximately in G(n — 1), the probability that n is a factor of asbs is

1 (1 —1n(2))(n —1)2
P bo) =~
(nlaxbe) > TG = )2 n
1
n
Therefore ”g ‘I — 0 as n — oo, and similarly ‘C‘ J 7 0 as n — oo. It is therefore appropriate to consider



im |Cn—l N Cycl‘ . |82,n U S3,n U S4q,n U SS,nI

li = lim
n— 00 |Cn—1| n—00 |Cn—1|
> fim 1520 Y S4n]
n—oo  |Cp_1]
S S Son, NS
_ lim(| 2.n| N [San| — [S2m 4,n|)
n—o00 |Cn_1‘ |Cn_1| |Cn—1‘

To approximate \‘C?::'I as n — 0o, note that a pair (p, ) € C,,_1 satisfies (p, q) € Sz, if and only if the product node

(n)(p+ g —n)isin G(n — 1) and there exists a product path P € G(n — 1), [(P") > 3 with (af,b]) = (u,v),
uv = (n)(p+ ¢ — n). Let K(n) be the set of product nodes in G(n), and

J(n)={zx € K(n)|3P" € Gn—1),I(P") >3,db] =z}

where P” is a product path, then |J(n)| = |K(n)| — o(n). Suppose the product node (n)(p + ¢ — n) is randomly
chosen from all product nodes that are a multiple of n in G(n), then

[S2n| {z |z € J(n),n | «}|
|ICroil Hz|lzeKn)NKe(n—-1}uU{z |z Kn—-1),n| z}|
(1—11{1(2))712 —O(’I’L)

(1= @)(n? — (n - 1)?) 4 RN
L1
3

Similarly to approximate |fc4j”|'| , note that a pair (p, ¢) € C),—1 satisfies (p, ¢) € Sa ,, if the product node (n)(p+g—n)

isin G(n —1). Suppose the f)roduct node (n)(p+ g — n) is randomly chosen from all product nodes that are a multiple
of nin G(n),

[Sanl {z|zeKmn—1),n| z}|
Cocal ~ He [z e Km)nK(n—D}U{z [2 € K(n—1),n | z}]
(A-In2)(n=1)*
~ n — —
(1-1In(2))(n?— (n—1)%) + %
L1
3

2,nNSan| _ [S2.n| [San|

. . IS
Conjecture 1. S ,, and S, ,, are independent, and ol T 1016

Assuming independence between S5 ,, and Sy ;,.,

C,_1NcCe . Son Sanl =152, NS4
fim 1Cn=10Cal o [S2ml 4 [San| — [, 4,n]

n—oo |Cn71| T n—oo |Cn71‘

|Cnflmcnl

Corollary 3. Let C,, be defined as above, then lim,, emmy

4
<3

10



Theorem 4.1. Let ACy;, TNy be defined as above, then limp;_, o %gj‘é <L

Proof. Given a < b, let

C(a,b) = Cac N CQ_H N...NCy_1 N Cg
O(a,b] = Cg NCur1N...NCho1 NGy

Consider

AC M—k j+k
M
TN~ TN Z |CGi-1,54k) [1( |_| Clm—1,j+1) # 0)
M M = Jj=2 m=j+1
Taking limit of both sides,
M—k j+k
. ACy . 1
]\/}E,noo TN = ]\4111)1100 TN |C(] 17J"!‘1€)|IL |_| C(?n 1,5+k] % @)
M My=1 j=2 m=j5+1
1 M-k ' +k
= hm oo Lim |Cr 1,5l Jim 1( ( L Conyrin #0)]
M k=1 j=2 7 m=j'+1
ICap)l  _ [Cb1NCy
Conjecture 2. C; are independent, and sl = 1G]
Under this assumption, we obtain
C Cliqivk
1Cli—1i+m)| = €51 NG H | -2 ] Oy

Cii-1,j+1-11 1CG-1,j45-1]

_ nayl H |G N O] 1 _ Gt N G
Cina |Cjti-1] 1Cjr—1]
J+Hi—1 Jjt+k—1

Conjecture 3. For random j > n, E(|CS_; N Cj]) < 1asn — oo.

Taking limit of both sides,

- . |C)41-1 N Cji] Cj4k—1 N Cjyi
Jim G| = lim {1CF-, NG| H 1- =

Gl |Cjth—1]
= lim |C{ 4N CjHH lim M] lim (1 — [Ci+h-1 N Cje|
g0 iz (Gl Tioee |Cj k-1l
= lim {C5, N GyR* (1~ B))
where R = lim,,_, % and the limit is finite. We further note that
j+k j+k
L] Con1jsm #0) < D |Cn—1.j+4]
m=j+1 m=j+1
Jj+k j+k \C
(m— 1l]|
= |Cr1 N Ci]
2 1 nGalll] =R
Jtk Jtk
c ICi-1 NG
= Z |Cr—1 ﬁCm|[1_[ W]
m=j+1 l=m -1

11



Considering C(,,—1,;++] as random variables, we take limit of expectation of both sides,

j+k j+k Jjtk

|Cl 1ﬁCl|
i PO L] Conorgon 200 < Jim {3 1G5 nEnll T =570
J m=j5+1 m=j+1 -1
Jjt+k gtk
|Cl 1001
< lim{
<fmt 2 s
i+k  j+k
Jz: []1—[ lim |Cl—1ﬂCl|]
M=l l=m o €1
1—RF
_Rl—R
Therefore an upper bound for limp;_, o ?gﬁ is obtained
M-k
. AC]W . k—1 17Rk
< ¢ y —
P i 3 S 650G = IR

- 1— RF 1 =
’;R (1= R)(RT—p )zv}lﬂo{kzzl TNy ; G NGl

_Y R - myrE

1-R
R
- 1-R?
By Corollary 3 R = lim,,_, o ‘Cl%fﬁl <3 4 Therefore lim /o0 T Nﬁ < 1. 0

4.1 Conjecture
By observing G(n) for various n, we propose two conjectures of the tail T' = (a;, b;) of the longest length [ in G(n).
Conjecture 4. It is very likely that a; + b; > a;_1 + b;_1.

Conjecture 5. The asymptotic behavior of a; + b; is that a; + by ~ 2n.

S Appendix

We obtain expressions for the number of product nodes of the form p1p2...p,,, m = 4,5 and generalize to higher m.
When m = 4, a product node of the form p1 papspy exists in G(n) if and only if pops < nand p1ps < n,or p1paps < n
and py < n.

1. pops <nmandpips <n

Wal val Lss) Les) | WAl vl . "
DD DI Z D [n(0) +2 = m(p) — ()~ w(pa) + 1]
P1=2 p2=p1 P3=p2 P4=D3 P1=2 p2=p1 P2 P2

2. pip2p3 <nandps <n
To avoid double-counting, we count the number of product nodes such that (2) is satisfied but (1) is not satisfied.

12



This is equivalent to the conditions p; paps < n and ;l% < pg < n. Since p3 < pﬂl, for a fixed p; the choices of
(p1, p2, p3) and p4 are independent. Therefore we have

L¥m) ol Laes) L] L) Woerl lams .
ST D0 D> I=d 1> > Hirm) —a(—+1))]
p1=2 p2=p1 Pp3=p2 pa=pr-+1 p1=2 p2=p1 P3=p2 n

When m = 5, a product node of form p;papspsps can be written as the product of two numbers (a, b), a,b < n in
(?) + (g) = 15 ways.

(P1p2p3, Paps), (P1P2P4, P3P5), (P1D2Ds, P3D4)s (P1P3P4, P2D5), (P2D3P4, P1D5)
(p1p3Ps5, D2p4), (P1PaD5, P2P3), (P2D3D5, P1P4), (D2DaDs, P1P3)s (P3P4Ps, D1D2)
(p2p3paps, P1), (P1P3PaPs, P2), (P1P2PaDs5, P3), (P1D2P3P5, Pa)s (P1P2P3P4, D5)

We note that every pair in the second lines implies a pair in the first line. For example, p1psps < n, paps < n implies
p1p2ps < n, paps < n. In addition, every pair in the last line implies the last pair in the last line.

1. (p1p2p3, paps)

Lyml Wl L) Lval Les)

I DD

P1=2 p2=p1 P3=Pp2 P4=P3 P5=P4

2. (p1p2p4, p3ps)
P1papa <y ot <ps < -

Lm) Wer) Lva) Lass) L35

IS ID DD

P1=2 p2=p1 P3=p2 Pa=p3 p5:max(p4ﬁ+1)

3. (p1p2ps, papa)
psps <, o <ps <

p1p2

Lml W) Lval Lss) L5753

IS D IEED DN

P1=2 p2=p1 P3=p2 P4=D3 p5:max(p4,%+1)

4. (p1p3pa, p2ps)
P1pspa <, 3= < ps < 550 < P1paps.

Lym) Lva) Wl L) L33
> 2 > X > !
P1=2 p2=p1 P3=p2 P4=p3 p5=max(p4,;—/3+1,ﬁ+l)

5. (p2p3pa, p1ps)
Pap3pa S, ot < ps < ot

V) [¥m) Wes] Lages) T

)OI IED S D

P1=2 p2=p1 p3=p2 P4=D3 p5:max(p4,%+l)

13



6.

5.1

(p1p2p3p4, ps)
The case occurs, without any of the above cases occurring, if and only if p1ps > n

L V7] L\/?J I-V 1’11;2J meT;m [n]
> 2 X X >, 1

p1=2 p2=p1 P3=pP2  P4=P3 ps=max(pa, """1)

Generalization to Higher m

Let the product be p1ps...ps, in G(n).

1.

2.

The number of ways pps...p,, can be written as the product of two numbers (a, b), a,b < nis 2m~1 — 1.

Some cases may include other cases. For example, (Hf;l Di, Dm) includes (H%l Di, D).
i#]

Choose one case (Pr, Pry---Dry s Dsy Psa---Psy, )» Tie1 < Ti» Si—1 < $;. Without loss of generality suppose 7, < Sp.
The number of product nodes of this form is

n n

PryPro---Pro_1 n PrqPrg---Pry_q
pP1=2p2=p1 =pi—1 Prq =Prq—1 Pi=pi—1 Dsp =Ps,—1

Suppose we calculated the number of product nodes of M forms and seek to calculate the additional number of
product nodes of the (M + 1)th form. Inequalities of the (M + 1)th form are satisfied and at least one of the
two conditions of each of the previous M forms is not satisfied. Therefore instead of summing p; from p;_1, we
sum p; from max(p;_1, A1, ..., A;), where A represent inequalities not satisfied.

. We seek an improved upper bound for summation of each of p,,, ps,. Consider p,,pr,...pr, < n, then p,, <

at1-i/ ———_ Similarly p;, < p+1-i/ —2—
Pro---Pri_; K Psy---Ps; 1

. To find the maximum for m, consider 2™ < n <= m < log,(n)
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