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Abstract

I begin by formalizing the notion of tiling problems with the intent to strengthen the con-
nection to generalized exact cover problems and to provide insight into the way I structured
my code, the Exact Cover Problem Solver, the third version of which I describe step-by-step
before considering further adjustments I intend to make.

1 Overview
The purpose of this paper is to construct a formalization of the notion of tiling problems that

makes it clear that they are special cases of exact cover problems and to present the method of my
code, the Exact Cover Problem Solver, that solves the computational problem called #ExactCover.

2 Tiling Problems
Before we can consider tiling problems or the interpretation of them as exact cover problems,

we need to understand what they are.

Definition 2.1. A tiling problem is a problem pertaining to how many ways a given region can be
perfectly covered, or tiled, by non-overlapping copies of specified tile types.

Surely the reader will agree that this explanation is intuitive enough to put the image of the
problem in anyone’s head, but it is far from rigorous. For one thing, it relies on a presupposed
intuition for what a region is and does not specify what is meant by “copies” of tile types. For
these reasons, let us first reconstruct this definition with a more formal foundation.

Definition 2.2. Let B be an n-by-m box containing nm unit squares S, and designate any subset U
of these unit squares as the tileable units with the requirement that either |U |= 1 or every element
of U is adjacent to at least one other. The corresponding region region R is U contained in B. We
shall call the complement of U in S, Uc, the set of non-tileable units and refer to Uc contained in
B as the non-region.
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Now, our definition is not quite where we want it to be. Consider a particular region R associ-
ated with an n-by-m box B and tileable units U . If we leave U unchanged, and merely expand the
dimensions of B by adding one or more rows or columns of non-tileable units to the non-region,
then the resulting region R′ with associated box B′ ought to be considered the same region. From
an informal perspective, this is because padding a region with surrounding non-tileable units does
not alter the tiling problem if the tile types are kept constant. More formally, the justification for
this can be seen by the fact that there is a geometry-preserving bijection from U to U ′, which we
can, by abuse of notation, refer to as a geometry-preserving bijection from R to R′. Therefore, we
must consider regions not as individual objects, but as equivalence classes, where we consider two
regions R and R′ to be equal if there is a geometry-preserving bijection between R and R′. These
bijections include one or more of the following geometry-preserving operations any number of
times:

1. Adding or removing a row of non-tileable units to S and adjusting B accordingly.

2. Adding or removing a column of non-tileable units to S and adjusting B accordingly.

3. Shifting U over in B by one unit either up, down, left, or right.

4. Rotating U in B by 90 degrees clockwise or anti-clockwise.

Conjecture 2.3. These are the only operations on R that preserve the geometry of U .

For the sake of simplicity, we shall assume from this point on that all regions contain no rows
or columns that are disjoint from U .

Definition 2.4. Given a region R with an associated n-by-m box B and tileable units U , a subregion
R′ is a subset U ′ ⊆U contained in an n′-by-m′ box B′, where n′ ≤ n and m′ ≤ m.

That is, a subregion is a region that can be “contained” in a “larger” region. From this formal
perspective, tile types are just subregions of the region being tiled. To reflect this fact, we shall
denote tile types using r, which will also allow us to reserve T for denoting tiles, which shall be
defined shortly. To avoid confusion from the fact that tile types are themselves regions, we shall
heretofore only use the term region to refer to the specific region being tiled, unless otherwise
specified, and we shall refer to tile types as such.

Definition 2.5. Given a region R with associated B and U , and tile types r1,r2, . . . ,rt with associ-
ated tileable unit sets u1,u2, . . . ,ut , a tile t is the image of a geometry-preserving injection f from
a ui to U . We say that t covers a tileable unit u ∈U when u ∈ t.

Now that we have a formal definition of regions, tile types, and tiles, we are ready to formalize
the meaning of a perfect tiling.

Definition 2.6. Given a region R with associated B and U , and a set of tiles T , a perfect tiling is a
subset of tiles T ′ ⊆ T such that every u ∈U is covered by exactly one tile.

In this context, we can now define tiling problems more carefully.
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Definition 2.7. A tiling problem is a problem pertaining to how many ways a given region R with
associated B and U can be perfectly tiled by a subset T ′ of tiles T derived from given tile types
r1,r2 . . . ,rt .

Not only does this formulation of tiling problems make it clear that they can be interpreted as
specialized cases of exact cover problems, but, as we shall see, it provides us with the perspective
to do so. In order to see this, let us take a step back and look at generalized exact cover problems.

3 Tiling Problems As Exact Cover Problems
Before we can understand what an exact cover problem is, we first need to define set covers.

Let us start with a set X = {1, . . . ,n} for some n ∈ Z+. This will be the universe, or n-universe, of
our set cover problem. Consider a family of subsets S⊆ X .

Definition 3.1. Given an n-universe X and a family S, a set cover is a subfamily S′ ⊆ S such that⋃
s∈S′ = X .

There are several questions one might ask when given (X ,S). Is there a non-trivial set cover?
That is, is there a set cover S′ that is a strict subset of S? How many set covers are there? For our
purposes, we are interested in particular types of set covers called exact set covers.

Definition 3.2. Given (X ,S), an exact set cover, or simply, exact cover, is a pair-wise disjoint set
cover.

Exact set cover problems are all about finding the number of these exact covers given (X ,S).

Definition 3.3. An exact cover problem is a problem pertaining to the number of exact covers of
an n-universe X given a family of allowable subsets S.

It is not too difficult to see that we can interpret a tiling problem as an exact cover problem.
Let R be a region associated with B and U . If we associate each tileable unit u ∈U with a unique
number from 1 to |U |, then we can consider tiles as tuples that contain the numbers associated with
the tileable units that they cover. Then, the set X = {1, . . . , |U |} becomes our universe, the set T of
all tiles becomes our family S, and there is a bijection between each perfect tilings of R by tiles in
T and exact covers S′ of X .

The point of formalizing the notion tiling problems the way that we did was to make manifest
this connection to exact cover problems, which we can more easily approach with programming
methods. Exact cover problems do not always provide favorable solutions. In fact, certain regions
and tile types give rise to no perfect tilings. Such instances of the non-existence of tilings is neither
surprising, nor difficult to confirm, since we can imagine a region made up of three tiles in an
“L” position and imagine that the tile type is a domino, which clearly cannot perfectly tile the
region because there are an odd number of tilable units and each tile must cover an even number
of tileable units. The conditions for when no perfect tilings exist is a related interesting problem
and is answered in part by Conway and Lagarias [2].

Among the tiling problems that do have perfect tilings, there are certain regions and tile types
that provide “round” answers, which is to say that the solutions to a sequence of tiling problems,
where we increase the dimension of the region in a particular and consistent way, form a sequence
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of numbers that are all products of small primes and increase with some pattern to be discovered.
Robbins discusses round enumerations in his work with alternating sign matrices, wherein he ob-
served that the sequence you get by letting An be the number of n-by-n alternating sign matrices
forms a sequence of round numbers identical to the sequence you get by letting Dn be the number
of descending plane partitions with no part exceeding n [6]. Patterns like these motivate the de-
velopment of programs that can solve exact cover problems and provide data to locate and explain
round answers. Propp discusses many of the concepts expressed in this paper in the context of
round numbers [5].

4 Dynamic Programming
Robbins’ method involves dynamic programming, which we explain and apply in our own

program. Given (X ,S), one might attempt to solve an exact cover problem with the following
naı̈ve algorithm.

Algorithm 4.1. Start with the trivial node that is the empty set. For each node N, find the smallest
element x ∈ X not contained in N. For each subset sx ⊆ S that covers x and is disjoint from N,
branch off and create a child node sx∪N. If no such sx exists, that branch of the tree will terminate.
Repeat the process until every node terminates. If a branch terminates at S, it is a path to an exact
cover. Therefore, count the number of exact covers by counting the branches that terminate at S.

This algorithm will certainly work, but it is not very fast. To be more precise, it is exponential
in the cardinality of X . Unfortunately, any algorithm for solving exact cover problems will be
exponential, but we can do better.

Definition 4.2. Given (X ,S), a partial covering is a subset S′ that exactly covers a subset of X .

Algorithm 4.3. Start with a family of sets C that only contains the empty set and note that there is
one of this particular partial covering. For each set c ⊆C, let m denote the multiplicity of c, the
number of times that it has been reached, and find the smallest element x ∈ X that is not covered
by c. For each subset sx ⊆ S that covers x and is disjoint from c, consider sx∪ c. If sx∪ c has not
been reached before, mark it as a new partial covering with multiplicity m and add it C. If it has
been reached before with multiplicity n, update its multiplicity to be n+m. If c is not S, subtract it
from C. Repeat this process until the only element of C is S and take the multiplicity of S to be the
number of exact covers.

Keeping track of multiplicity allows the algorithm to minimize repeated work. That is, if a
partial tiling has multiplicity m and has n children, the naı̈ve algorithm would require a separate
branch for each of the m ways to achieve the partial tiling for each of the n children. However, with
this new approach, called dynamic programming, we only have to look at each “child” once. This
“merging” of multiplicity saves the algorithm a lot of counting time. In fact, if we consider exact
cover problems that are tiling problems, this algorithm is exponential in the width of the geometric
shape formed by the tilable units associated with R, rather that in its area. There is, however, a
trade-off, as the dynamic programming algorithm requires a lot more memory storage.

Of course, this explanation of dynamic programming is specifically about tiling, and thus is
better termed dynamic tiling. Laaksonen details the method for more general programs in which
time and not memory is a limiting factor [4].
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5 The Exact Cover Problem Solver
David desJardins implemented dynamic programming in his code for solving tiling problems

[3]. His code, TilingCounts, takes in regions, including tile types, as ASCII art and uses dynamic
programming to calculate the number of perfect tilings. As it stands, his code is maximally effi-
cient, but not generalized to exact set covers.

After the fashion of his code, to which he kindly allowed me access, I was able to write a
program, the Exact Cover Problem Solver (ECPS), that does two things: converts a tiling problem
to an exact cover problem, and solves exact cover problems. This way, it can be used to solve
any exact cover problem, not just tiling problems, and still has the capacity to function as a tiling
problem solver without the perspective of exact cover problems.

Suppose that we have a tiling problem with region R associated with an n-by-m box B and a set
of nm unit squares S with tileable units U ⊆ S, and tile types r1,r2, . . . ,rt with associated tileable
units u1,u2, . . . ,ut . When acting as a tiling problem solver, the ECPS, can take in ASCII art of
the tileable region in the form of an n-by-m grid of text, where elements of U are represented by
hashtags and elements of Uc are represented by periods. Each tile type is similarly drawn out with
ASCII art in appropriate grid sizes, with a horizontal blank line separating the region from the tile
types and the tile types from one another. So long as the region is first, the order of tile types does
not matter.

The region is then converted into a list of lists, which allows for a coordinate system, where the
symbol at (x,y) can be found by starting at the top left and moving to the right x times and down
y times. The coordinates of each element of U (i.e., each hashtag) are associated with a unique
number from 1 to |U | in a dictionary, called a cdict, with coordinates as keys and non-negative
integers as values. A similar cdict is created for each of the tile types, but only for the purpose of
knowing the coordinates of each tileable unit of a given tile type.

Now, we are ready to form our tiles.

Algorithm 5.1. Suppose that we have a tile type ri associated with an ni-by-mi box and tileable
units ui. For each integer tuple ( j,k) such that 0≤ j ≤ ni−1, 0≤ k ≤ mi−1, check the image of
the geometry-preserving injection from ui to S that sends the tileable unit ui with coordinates (x,y)
to the element of S in the region whose coordinates are (x+ j,y+k). If the image is in U, it is a tile;
represent it as a tuple that contains the numbers associated through the cdict of the region with the
coordinates of the tileable units that it covers. If the image is not in U, it is not a tile. Regardless,
since this algorithm has checked all possible images of geometry-preserving injections from ui to
S, it has checked all possible images of geometry-preserving injections from ui to U and therefore
has found all possible tiles formed from ri. Repeat this process for all tile types and obtain the set
of all tiles T .

At this point, we have successfully converted our tiling problem to an exact cover problem with
a universe of X = {1, . . . , |U |} and family of subsets S = T . If one wanted to skip this conversion
and deal with general exact cover problems, they would be able to enter their own n-universe and
S in place of the above steps and continue with the part of the program to follow. In other words,
despite the terms “tiles” for S, “tile” for subset, and “partial tiling” for partial covering, which were
chosen largely for consistency with the beginning of the program, there is nothing about the second
half of the program that relies on tiling or regions.
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Definition 5.2. Given a partial tiling or tile t and an n-universe, the key representation or key rep
of t is the non-negative number in base 10 associated with the binary sequence of length n that
contains a 1 in the i’th digit if and only if i ∈ t.

These key reps efficiently encode the information of which tileable units each tile covers, which
will later allow us to compare the compatibility (i.e., pair-wise disjointedness) of partial tilings and
new tiles when it comes time to implement dynamic programming. We will search for offspring
tiles in the dynamic programming with a list of lists, called a q-set, where the i’th list contains all of
the the key reps of tiles that cover i. Lastly, we create a list called counts, which contains an integer,
which is 0 at first and increases by one each time an exact cover is found, and n dictionaries, where
the i’th dictionary contains the keys reps whose smallest uncovered element of U is i as keys and
their multiplicities as values. To start, the first dictionary has {0 : 1} to represent that there is a
trivial partial tiling with multiplicity 1, and the other dictionaries are empty, since there are no
other partial tilings yet. As dynamic programming is implemented, these other dictionaries will be
updated accordingly.

Algorithm 5.3. Iterate over the integer i for 1≤ i≤ n. At the i’th step, for each key reps in the i’th
dictionary of counts (i.e., the ones that need to have i covered), for each key rep in the i’th q-set
(i.e., the tiles that can cover i), if the key rep for the tile, k1, and the key rep of the partial tiling, k2,
do not have mutual 1’s, take the sum k3 = k1+k2 to be a new partial tiling. If k3 is a perfect tiling,
update the count of perfect tilings. Otherwise, update the multiplicity of k3 accordingly, check for
the smallest j ∈U that is uncovered, and send k3 along with its multiplicity as a key/value pair
to the j’th dictionary of counts to be further tiled. After the process is complete for all i, take the
count of perfect tilings to be the number of exact covers.

6 Future Work
The program right now is able to do exactly what it says: it converts tiling problems to exact

cover problems and it solves exact cover problems, but there are a few ways in which it can be
improved. For one thing, the entire code is currently written in Python, which is good for the most
part, but the computationally-intensive part of the code, the part dealing with dynamic program-
ming, ought to be written in a faster language, like C++ for further efficiency. Furthermore, there
is a way to do it without worrying about dictionaries, which would speed up the process signifi-
cantly. To that end, I intend to transfer the code to Cython and adjust that part accordingly with
ideas presented to me by Greg Kuperberg.

I would also like to implement a function that would find the optimal way to enumerate the
region in order to minimize, or at least reduce, the amount of work for the dynamic programming
part of the code. This involves issues of pathwidth optimization. The program currently numbers
the tileable region from left to right and up to down, but that might not always be the most efficient
numbering system. Given a region and tile types, we ideally want to find a way to number the
region so that the ECPS has to do the least number of iterations. In effect, this means that we want
to minimize the number of choices that it has to iterate over when we are trying to find a cover for
the i’th tileable unit, which is related to how we choose to number the tileable units. Bodlaender
[1] relates the notion of treewidth, as formalized by Robertson and Seymour [8, 7], to the efficient
construction of combinatorial solutions and it is not difficult to see the connection to efficient
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enumeration from there. This connection was further demonstrated by Samer and Szeider [9] for
#SAT and, by the equivalence of #SAT and #ExactCover, we can apply it towards constructing a
more efficient version of the ECPS that uses treewidth rather than pathwidth.

Lastly, this code is very flexible in its ability to solve general exact cover problems, which
means it has potential for more capabilities that I intend to implement, such as calculating the
number of perfect tilings of a region with specified tile types that satisfy specific criteria (e.g.,
symmetry under rotation). Needless to say, my work on making the ECPS the best it can be
continues.
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