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Abstract

The full Coriolis force includes both the familiar sin-of-latitude terms as well as the fre-
quently dropped cosine-of-latitude terms, known as the nontraditional Coriolis terms (NCT)
[1]. In traditional atmospheric models, the NCT are often neglected as its effect in context of
the momentum equations of fluids is insignificant for large scale flows. However, at the equa-
tor, the NCT reaches a maximum, thus raising the question of the validity of this traditional
approximation. Using a poloidal model of circulation (DoNUT), Igel and Biello (2020) show
that the nontraditional Coriolis force imparts a westward tilt to ascending equatorial convective
flows, resulting in vertical upscale fluxes of zonal momentum on the mesoscale and ultimately
revealing the importance of NCT in tropical convection. The purpose of our project was to
experimentally verify this phenomenon using vortex rings in a rotating tank of water, as well
as study the dynamics of vortex rings in general. Although we did not develop an explicit
model of the background flow representing the westward convective tilt, we were still able to
detect and record the circulation resulting from the toroidal vortices, setting foundation for fu-
ture investigation. In the process of our project we studied the mathematics of incompressible
fluids, rotational dynamics, and vortex rings.

1 Introduction
The Earth constitutes a rotating frame of reference over which the fluid of the atmosphere and

ocean move. The Earth’s rotation gives rise to the Coriolis effect, or Coriolis force -a pseudo force
acting perpendicular to the direction of motion and to the axis of rotation in a rotating frame of
reference. While it is well known that the Coriolis force dictates all atmospheric motion, its effect
is most weakly experienced in the tropics. In a recent study, Igel and Biello (2020) have developed
mathematical models that recognize the importance of the Coriolis force in organizing tropical
thunderstorms.

Using a rotating fluid tank with a pair of small vortex cannons intended to mimic convective
plumes in the tropical atmosphere, our experiment aimed to analyze the flow of the vortices as well
as the dynamics of their interaction. With a variety of different setups and cannon parameters, we
worked to collect data in order to find a pattern in the vortex ring induced circulation. Paralleling
the theory established by Igel and Biello (2020), our hypothesis involved the detection of a mean
flow, or background circulation, characterized by westward tilt in the ascending arm of the flow
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and eastward tilt in the descending arm. In the first part of this report, I will discuss some of the
mathematics involved in our project, including rotating frames of reference and incompressible
fluid dynamics. Then I will discuss the background and theoretical basis for our experiment in
context of the atmosphere. Lastly I will go into the details of our experiment, involving the setup,
procedure, data collection, and results.

2 Rotating Frames of Reference
To see where the Coriolis force arises from, one must consider the equations of motion in

a rotating frame of reference where the direction of basis vectors changes over time. We’ll let
Ω⃗ = θ̇ , v⃗ = ṙ, and a⃗ = v̇

dî
dt

= Ω⃗× î,
d ĵ
dt

= Ω⃗× ĵ,
dk̂
dt

= Ω⃗× k̂

Consider the rate of change of an arbitrary vector, u⃗ = uî+ v ĵ+wk̂, in R3,

du⃗
dt

=(
∂u
∂ t

î+
∂v
∂ t

ĵ+
∂w
∂ t

k̂)+(u
dî
dt

+v
d ĵ
dt

+w
dk̂
dt

)= (
∂u
∂ t

î+
∂v
∂ t

ĵ+
∂w
∂ t

k̂)+(u(Ω⃗× î)+v(Ω⃗× ĵ)+w(Ω⃗× k̂))

=⇒ (
du⃗
dt

)I = (
du⃗
dt

)R + Ω⃗× u⃗ (1)

The first term (du⃗
dt )I represents the time derivative of u⃗ in the stationary reference frame and (du⃗

dt )R
represents the time derivative in the rotating frame.

Now consider an arbitrary position vector r⃗: ( d⃗r
dt )I = ( d⃗r

dt )R + Ω⃗× r⃗ =⇒ v⃗I = v⃗R + Ω⃗× r⃗

Plug v⃗I into the general expression given by equation (1) :

=⇒ (
d⃗vI

dt
)I = (

d⃗vI

dt
)R + Ω⃗× v⃗I = (

d
dt
(⃗vR + Ω⃗× r⃗))R + Ω⃗× (⃗vR + Ω⃗× r⃗)

=⇒ a⃗I = a⃗R +
d
dt
(Ω⃗+ r⃗R)+ Ω⃗× v⃗R + Ω⃗× (Ω⃗× r⃗) = a⃗R + Ω⃗× d⃗rR

dt
+ Ω⃗× v⃗R + Ω⃗× (Ω⃗× r⃗)

∴ a⃗I = a⃗R +(2Ω⃗× v⃗R)+(Ω⃗× (Ω⃗× r⃗)) (2)

Applying Newton’s 2nd law, we’ll multiply equation (2) by arbitrary mass, m. We have now
reached an equation describing the forces felt by an object in a stationary reference frame in relation
to a rotating frame:

F⃗I = F⃗R +2m(Ω⃗× v⃗R)+mΩ⃗× (Ω⃗× r⃗) (3)

On the right hand side of equation (3), the 2nd and 3rd terms are interpreted as the Coriolis force
and the centrifugal force, respectively. As shown, the Coriolis force acts in the direction of the cross
product of the rotation vector, Ω⃗, and the velocity in the rotating frame, v⃗R, which is perpendicular
to the direction of travel. [2]
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3 Incompressible Fluid Dynamics
Foundational to the mathematics of fluid dynamics in the atmosphere is the concept of in-

compressible flow. The approximation of the atmosphere as an incompressible fluid turns out to
be extremely accurate for the large scales in which motion takes place, simplifying models im-
mensely.

Fluids are analyzed from two viewpoints: the Lagrangian/material view and the Eulerian/field
view. The material view concerns analysis of fluid motion in terms of positions and momenta of
particular fluid elements, while the field view concerns time evolution of the fluid field from a
particular reference frame. These two viewpoints are related by the material derivative, defined as
follows [2]:

D
Dt

=
∂

∂ t
+ u⃗ ·∇

The material derivative describes the rate of change of a particular fluid element subject to a space
and time dependent velocity field, u⃗. An incompressible fluid is a fluid in which Dρ

Dt = 0. This
condition simplifies the mass continuity equation, yielding the familiar form:

∇ · u⃗ = 0 (4)

3.1 The Momentum Equation
The momentum equation is a partial differential equation describing how the velocity or mo-

mentum of a fluid responds to internal and imposed forces [2]. This PDE expresses conservation
of momentum, essentially representing Newton’s 2nd law for fluids. To derive the momentum
equation, we’ll first let m⃗(x,y,z, t) be the momentum-density field of the fluid. Thus m⃗ = ρ u⃗, and
the total momentum of a volume of fluid can be expressed as,

∫
V m⃗dV .

The rate of change of m⃗ of a fluid mass is given by the material derivative, and is equal to the
forces acting upon it,

D
Dt

∫
V

ρ u⃗dV =
∫

V
F⃗dV =⇒

∫
V
(ρ

Du⃗
Dt

− F⃗)dV = 0

Because the volume is arbitrary, the integrand must vanish =⇒ ρ
Du⃗
Dt = F⃗ . Expanding the material

derivative then gives the general form of the momentum equation [2]:

∂ u⃗
∂ t

+(⃗u ·∇)⃗u =
F⃗
ρ

(5)

Inserting the pressure gradient and viscosity term, known as contact forces, and including (4) gives
the incompressible Navier-Stokes equations:

∂ u⃗
∂ t

+(⃗u ·∇)⃗u =−∇p+ν∇
2⃗u+

F⃗
ρ

∇ · u⃗ = 0
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Taking the curl of the Navier-Stokes momentum equation and applying several vector identities
gives the analogous vorticity equation,

∂ω⃗

∂ t
+(⃗u ·∇)ω⃗ − (ω⃗ ·∇)⃗u = ν∇

2
ω⃗

Vorticity, ω⃗ , defined as the curl of the velocity field, measures the local rotation of a fluid at
some point. The second term on the left-hand side of the voritcity equation above represents the
transport of vorticity by the velocity field. The third term, the vortex stretching term, represents the
enhancement of vorticity by stretching and is important in the turbulence dynamics of the system
[3]. The last term describes the effects of viscous diffusion on the vorticity distribution, resulting
in the vorticity diffusing throughout space [3].

3.2 Stream Functions
Stream functions are an important concept in the analysis of fluids, defined for incompressible

2D fluids as well as 3D axisymmetric flows -such as poloidal flow. The stream function allows us
to visualize streamlines that represent the flow of the fluid.

Consider u⃗ = uî+ v ĵ. Define stream function, ψ , such that,

u =−∂ψ

∂y
, v =

∂ψ

∂x

Then, using the following,

u⃗ =−∂ψ

∂y
î+

∂ψ

∂x
ĵ, ∇ψ =

∂ψ

∂x
î+

∂ψ

∂y
ĵ

It is true that,
u⃗ ·∇ψ = 0

Hence u⃗ is parallel to contour lines of constant ψ , or in other words, ψ is constant along the
streamline of the flow. Also ψ satisfies the continuity equation since ∇ · u⃗ =− ∂ 2ψ

∂x∂y +
∂ 2ψ

∂x∂y = 0.
Using the stream function, vorticity can be expressed in the following way:

ω⃗ ≡ ∇× u⃗ = ∇× (−∂ψ

∂y
î+

∂ψ

∂x
ĵ) = (

∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 )k̂ = ∇
2
ψ (6)

Thus, ψ can be found from ω⃗ using the Poisson’s equation in (6). It should be noted that in the
case of ∇2ψ = 0, the fluid is irrotational. Combining equation (6) with the voriticity equation gives
the stream function and voriticity formulation of the Navier-Stokes equation.

4 The Nontraditional Coriolis Force
Based upon the work of Igel and Biello (2020), the primary goal of our experiment was to

test the theory associated with the dynamics of the circulation created by a poloidal flow in the
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presence of the Coriolis force -the organizer of planetary motion. However, at the equator, only
the nontraditional Coriolis terms influence the motion associated with tropical convection.

To see where the nontraditional terms come from, we’ll consider our equations of motion in
a noninertial reference frame attached to the rotating Earth [1]. The momentum equation for an
inviscid fluid in a rotating frame of reference is thus,

Du⃗
Dt

+∇p⃗ =−2Ω⃗× u⃗+ F⃗ext (7)

with u⃗ = uî+ v ĵ +wk̂, where î, ĵ, and k̂ represent east, local north, and local up, respectively.
We let Ω⃗ = Ω0(cosλ ĵ + sinλ k̂), where Ω0 is the rotation rate of the Earth and λ is the latitude.
Expanding the cross product in the Coriolis force term and rewriting (7) in component form yields
the equations:

Du
Dt

+
∂ p
∂x

= 2Ω0vsinλ −2Ω0wcosλ

Dv
Dt

+
∂ p
∂y

=−2Ω0usinλ

Dw
Dt

+
∂ p
∂ z

= 2Ω0ucosλ +Fg

Here, the nontraditional Coriolis terms are the ones containing cosλ , as this quantity reaches a
maximum at the equator, while the sinλ terms are correspondingly reduced to zero.

To analyze the effects of the NCT, Igel and Biello (2020) define the net Coriolis force,

F⃗net = F⃗tot −∇pC =−2Ω⃗× u⃗−∇pC

where the Coriolis pressure, ∇pC, serves to maintain a non-divergent net force, satisfying the
condition that the fluid is incompressible [1]. A Leray projection is then used to diagnose this
pressure field and subsequently find a general expression for the net, nondivergent force required
to maintain a non-divergent flow, u⃗. Igel and Biello (2020) then apply this Leray projection to their
DoNUT model, a poloidal model of convection, to arrive at an equation for the ”Coriolis shear
force”,

FCS(0,z) =−2Ω0cos(φ)
∂G
∂y

î =−Ω0cos(φ)w(z)î

This force is shown to be proportional to the strength of the vertical velocity along the central axis
and point westward in the ascending part of the convective flow. Igel and Biello (2020) show that
this force corresponds to an upscale flux of zonal momentum to the east, causing westerly wind
bursts on a larger scale.

5 The Experiment
By shooting vortex rings in a rotating tank, we were able to simulate a poloidal circulation in

the presence of the Coriolis force. Our experiment allowed us to study the properties and dynam-
ics of vortex rings, with the ultimate goal of detecting a mean flow associated with the larger scale
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circulation induced by the rings.
Our experiment took place in a cylindrical tank (1 meter diameter) filled with water about 12

centimeters high that rotates with a period of 36 seconds. The vortex rings were fired from two
identical vortex cannons attached to a pressurized system involving a water reservoir, pistons, and
a pressure tank. Controlled by Python code, we were able to adjust the parameters of the vortex
cannons, allowing us to experiment with different pressures, valve openings, and durations of the
firing mechanism.

In our set up, looking into the tank from above corresponds to standing at the equator and look-
ing southward. With the tank rotating counterclockwise, vortex rings fired in the horizontal plane
will naturally arc to the right, mimicking clouds rising in the atmosphere and drifting westward
due to the Coriolis force.

5.1 Set Up
The following was done before the firing of each volley of vortex rings:

1. Connect the air pumper to the battery charger. Push the 220 V button on, which will be
indicated by the white light.

2. Connect the water pump and the valve pressure machine with a dual adapter. Connect the
dual adapter with the battery charger and turn the switch on.

3. Push the button that controls the pressure in the pressure tank. Turn the pressure to desired
value (typically in the 80-95 psi range). Moniter this value regularly to ensure that it stays
the same and adjust accordingly.

4. Adjust the pressure valve to the desired value.

5. Next, we fill up the water reservoir from the syringes. To do this, make sure that the blue
knobs are turned towards the tubes attached to the cannons. After turning the knobs, push
both syringes at the same time to fill the reservoirs. Make sure that there are no air bubbles
in them. Moniter syringes after each experiment and replenish as necessary.

6. Fill the tank up with water to the depth of 12 centimeters.

7. Clean launching cannons Alpha and Bravo until they are clear of any residue.

8. Immerse the cannons in the water

9. Turn on the GoPro camera, making sure it is charged. Position it above the tank so that the
entire system is in frame.

10. Turn the computer on and open up the program ‘vortex.py’ on the VNC Viewer app, which
controls the launching of vortex rings from the cannon.

11. If everything above checks out, the experiment is ready to be performed.
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5.2 Procedure
1. Check the pressure and valve, and ensure that the blue knobs of the water reservoirs are

pointed up.

2. Check the duration and repeat parameters in the vortex.py file and adjust accordingly.

3. Next, to prepare the dye solution, fill two containers with 50 mL of water from the tank. Add
3 drops of methyl blue dye to each container, and stir well.

4. For each cannon, take it out of the water and push the aperture gently with a small metal rod
until it can no longer be pushed back.

5. Pour 50 mL of the dye solution into the cannon through the aperture. If there is a significant
amount of water that spills over, the cannon has not been pushed back all the way, so the dye
solution should be dumped out, and the previous step should be repeated.

6. Start the switch that rotates the tank and set it to a period of 36 seconds. Wait for the tank to
reach equilibrium.

7. Record the initial reservoir value, valve, pressure, duration, and repeat.

8. Start recording on the GoPro.

9. On the computer, run the code to launch the vortex rings.

10. Record observations regarding approximate size, speed, and clarity of rings. Note any dif-
ferences between the rings fired by the two different cannons. Record current reservoir value
and pressure.

5.3 Analysis and Results
Before we could begin to analyze the ”macroscopic” motion in our tank, a program was re-

quired to track individual vortex rings so that we could explore properties such as size, shape,
speed, and stability. The code for this program was developed by member of our team, Tyler
Greiner, in MATLAB. Using recorded GoPro footage, we worked to process the data from our
videos through this program to explore the relationships between the various parameters in our
experiment.

One important parameter of our experiment was the pressure valve, which was related to how
much pressure passed through the system into the cannon. In order to understand this feature, we
collected data of the vortex rings’ speed at different valve settings and different pressures. Two
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graphs showing the relationship between these parameters at different durations are shown below:

As shown, higher valve settings correspond to higher speeds. However, we found that beyond a
certain valve threshold (around 2.5-3) the vortex rings began to deform quicker due to drag.

Tracking the individual vortex rings and processing data consumed the majority of our project
so we did not have much time to analyze the macroscopic motion. However, by firing multiple
vortex rings using specified parameters, we were able to observe the mean flow we were looking
for:
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The mean flow pictured above matched the theory established by Igel and Biello (2020), as rising
flow tilted west and recirculation tilted east. With the methyl blue dye, we could visualize the mean
flow but could not track its deformed shape. Thus, in order to properly analyze the macroscopic
motion associated with the mean flow, a new method of appraoch was required.

As we determined, the dynamics of the mean flow can be best thought of as a vector field, so
we needed a way to map out the velocity at each point in the tank. Our first approach involved
using mica powder, composed of small, reflective two-dimensional sheets. By pouring the mica
powder in the tank, we hoped to track the motion of the individual mica particles which would
follow the flow. Although this method successfully allowed us to visualize the mean flow, tracking
the mica proved to be a difficult task that we could not complete due to time constraints.

Despite lacking time to fully analyze the mean flow, our summer project succeeded in laying
the experimental foundation for future investigation into the dynamics of rotating vortex rings.
With sufficient code to track the mean flow, a stronger verification of the theory established by Igel
and Biello (2020) can be attained.
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