

Shine bright like a *Diamond*

Nila Cibu, Mariam Abu Adas, Yuan-yuan Shen Professor Eric Babson

Keep an eye out for Rihanna's like this one! The others will be harder to find

Notation review

n	the largest integer that can be used to create a sum/product					
s-node (sum node)	a node corresponding to the sum of two integers					
p-node (product node) $\gamma(G)$	a node corresponding to the product of two integers					
	genus of graph G					
G(n)	the sum-product graph where n is the largest integer used to form sum and product nodes					
Sum nodes will usually be in red/pink						

Before we get to the diamonds

n = 40

Sum nodes and cycles

Every sum node greater than or equal to 14 will eventually connect into a cycle, as you let n grow larger.

Proof (even sum node case)

 the sum node might have leaves or other structures around it!

 $n = n_0$

n ≥ 2a-2

2a ۷

n ≥ 2a-2

n ≥ 2a-2

Ω

n = 10

What are diamonds?

They are the simplest cycle found in our sum and product graphs, more formally known as $K_{2,2}$

Mining (generating) diamonds

D =

F =

F =

G =

- B = A can be any number
- C = B, C, D cannot have a common factor
 - E, F, G need to all be co-prime
 - BCE > BDF and BCE > CDG, otherwise we'll have to do some reordering

ABDF \neq ACDG \neq CEG \neq BEF

continuation...

- r = ABCE t = ABDF v = ACDG
- s = DFG u = CEG w = BEF

- a = r s + t u b = r s t + u
- e = r s + v w f = r s v + w
- c = r + s + t + u d = r + s t u
- g = r + s + v + w h = r + s v w

Example diamond

- B = 3 A can be any number
- C = 2 B, C, D cannot have a common factor

D = 1 E, F, G need to all be co-prime

- E = 1BCE > BDF and BCE > CDG, otherwise we'llF = 1have to do some reordering
- $G = 1 \qquad ABDF \neq ACDG \neq CEG \neq BEF$

cor	ntin	uatior	1	(22)
r = 12	t = 6	v = 4 z = 1	2	15/	12
s = 1	u = 2	w = 3		7	10
a = 15	b = 7	/	Ľ		-
e = 12	f = 10	l also have	e a bit of	215	6/00
c = 21	d = 5	code that diagram fo	makes this or you!	21	\sim 20
g = 20	h = 6				26

Uses

- Main mess' boundary
- Finding all K_{n,m} subgraphs

Main mess' boundary

n = 40

K_{n,m} subgraphs

Almost every sum node is a part of a diamond

E.g sum nodes 16-59 are all a part of diamond for n = 40

It's possible that $K_{a,b}$ exists for all $a,b\in \mathbb{Z}^{\scriptscriptstyle +}$ for some n

K_{a,b} subgraphs might also help pin down the genus of the sum-product graphs!

Genus formula for complete bipartite graphs
$$\gamma(K_{m,n}) = \left\lceil \frac{(m-2)(n-2)}{4} \right\rceil$$

Genus of a graph

A **planar graph** is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints.

The **genus** of a graph is the minimal genus surface on which the graph can be embedded.

A little proof on planarity

n = 15

Simplified graph

Kuratowski's theorem

A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of the complete graph K_5 or the complete bipartite graph $K_{3,3}$ (utility graph).

Finding our utility

Other ways to pin down genus

More general bound for genus:

Thank you!

Did you manage to find all the Rihannas and Rihanna references?

-W-LOON

there were $oldsymbol{8}$ of them