

Shine bright like a Diamond

Nila Cibu, Mariam Abu Adas, Yuan-yuan
Shen
Professor Eric Babson

Keep an eye out for Rihanna's
like this one! The others will be harder to find

Notation review

n	the largest integer that can be used to create a sum/product
s -node (sum node)	a node corresponding to the sum of two integers
p-node (product node) $\gamma(G)$	a node corresponding to the product of two integers
G(n)	genus of graph G the sum-product graph where n is the largest integer used to form sum and product nodes
Sum nodes will usually be in red/pink	

Before we get to the diamonds

$$
\mathrm{n}=40
$$

Diamond!!!!

Sum nodes and cycles

Every sum node greater than or equal to 14 will eventually connect into a cycle, as you let n grow larger.

Proof (even sum node case)

$$
\mathrm{n}=\mathrm{n}_{0}
$$

the sum node might have leaves or other structures around it!

continued...
$n \geq 2 a-2$

$$
\left(\begin{array}{c}
\text { So } \\
=2 a \\
2
\end{array} \frac{2 a-2}{2} p_{0}\right.
$$

continued...

continued...

continued...

What are diamonds?

They are the simplest cycle found in our sum and product graphs, more formally known as $\mathrm{K}_{2,2}$

Mining (generating) diamonds

$\mathrm{A}=$
$\mathrm{B}=$
$\mathrm{C}=$
$\mathrm{D}=$
$\mathrm{E}=$
$\mathrm{F}=$
$\mathrm{G}=$
$\mathrm{C}=$

Restrictions:
A can be any number
B, C, D cannot have a common factor

E, F, G need to all be co-prime
$B C E>B D F$ and $B C E>C D G$, otherwise we'll have to do some reordering

ABDF $\neq A C D G \neq C E G \neq B E F$
continuation...

$r=A B C E \quad t=A B D F \quad v=A C D G \quad z=A B C D E F G$
$a=r-s+t-u \quad b=r-s-t+u$
$e=r-s+v-w \quad f=r-s-v+w$
$c=r+s+t+u \quad d=r+s-t-u$

$$
g=r+s+v+w \quad h=r+s-v-w
$$

Example diamond

$$
\begin{aligned}
& A=2 \\
& B=3 \\
& C=2 \\
& D=1 \\
& E=1 \\
& F=1 \\
& G=1
\end{aligned}
$$

Restrictions:

A can be any number
B, C, D cannot have a common factor
E, F, G need to all be co-prime
$B C E>B D F$ and $B C E>C D G$, otherwise we'll have to do some reordering
$A B D F \neq A C D G \neq C E G \neq B E F$
continuation...

$$
r=12 \quad t=6 \quad v=4 \quad z=12
$$

$$
s=1 \quad u=2 \quad w=3
$$

$$
\begin{array}{ll}
a=15 & b=7 \\
e=12 & f=10 \\
c=21 & d=5 \\
g=20 & h=6
\end{array}
$$

I also have a bit of code that makes this diagram for you!

Uses

- Main mess' boundary
- Finding all $K_{n, m}$ subgraphs

Main²mess' boundary

$n=40$

$\mathrm{K}_{\mathrm{n}, \mathrm{m}}$ subgraphs

Almost every sum node is a part of a diamond
E.g sum nodes $16-59$ are all a part of diamond for $\mathrm{n}=40$

It's possible that $K_{a, b}$ exists for all $a, b \in \mathbb{Z}^{+}$for some n
$\mathrm{K}_{\mathrm{a}, \mathrm{b}}$ subgraphs might also help pin down the genus of the sum-product graphs!

Genus formula for complete bipartite graphs

$$
\gamma\left(K_{m, n}\right)=\left\lceil\frac{(m-2)(n-2)}{4}\right\rceil
$$

Genus of a graph

A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints.

The genus of a graph is the minimal genus surface on which the graph can be embedded.

A little proof on planarity

$$
n=15
$$

Simplifying the rman m

0

Simplified graph

Kuratowski's theorem

A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of the complete graph K_{5} or the complete bipartite graph $\mathrm{K}_{3,3}$ (utility graph).

Finding our utility

Other ways to pin down genus

More general bound for genus:

$$
\gamma(G) \geq\left\lceil 1-\frac{v}{2}+\frac{e}{4}\right\rceil
$$

Thank you!

Did you manage to find all
the Rifannas and Rifanna references?

