Shine bright
like a Diamond
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i \ Keep an eye out for Rihanna’s

like this one! The others will be
harder to find



Notation review

n the largest integer that can be used to create a sum/product
s-node a node corresponding to the sum of two integers

(sum node)

p-node a node corresponding to the product of two integers
(product node)

v(G)

genus of graph G

G(n) the sum-product graph where n is the largest integer used to form sum and
product nodes

Sum nodes and
will usually be \ bk k,‘i m_roducts will
in red/pink 1 be in blue!



Before we get to the diamonds

n=40
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Sum nodes and cycles

Every sum node greater than or equal to 14 will eventually connect into a
cycle, as you let n grow larger.
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Proof (even sum node case)



continued...

n>2a-2

Saald



continued...
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continued...

n=>2a-2
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2a> a-1+4 = a+3 (remembers,>14=a>7)

a>3



continued...







What are diamonds?

They are the simplest cycle found in our sum and product graphs, more
formally known as K;,




Mining (generating) diamonds

A = Restrictions:

B= A can be any number

C= B, C, D cannot have a common factor

D = E, F, G need to all be co-prime

E= BCE > BDF and BCE > CDG, otherwise we'll
F = have to do some reordering

G= ABDF # ACDG # CEG # BEF



continuation...

r = ABCE t = ABDF v=ACDG z=ABCDEFG

s=DFG  u=CEG  w-=BEF @\

a=r-s+t-u b=r-s-t+u

e=r-s+v-w f=r-s-v+w

c=r+s+t+u d=r+s-t-u \Q_, l/\,

g=r+s+v+w h=r+s-v-w



Example diamond

A=2 Restrictions:
B=3 A can be any number
C=2

B, C, D cannot have a common factor

D=1 E, F, G need to all be co-prime
E=1 BCE > BDF and BCE > CDG, otherwise we’'ll
F=1 have to do some reordering

G=1 ABDF # ACDG # CEG # BEF



continuation..

r=12

s =1 u=2 w=3

B ///9

e=12 =10 | also have a bit of
code that makes this

c=21 d=5 diagram for you!

g=20 h=6



Uses

@® Main mess’' boundary

® Finding all K, subgraphs




Main*"mess’ boundary

n =40
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K.m subgraphs

Almost every sum node is a part of a diamond
E.g sum nodes 16-59 are all a part of diamond for n =40

It's possible that K,,, exists for all a,b € Z+ for some n

Kap Subgraphs might also help pin down the genus of the sum-product graphs!

complete bipartite graphs ’Y(Km n)
! 4

\_?

Genus formula for |'(m L 2)(n L 2)“



Genus of a graph

A planar graph is a graph that can be embedded in the plane, i.e., it can be

drawn on the plane in such a way that its edges intersect only at their
endpoints.

The genus of a graph is the minimal genus surface on which the graph can be
embedded.
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A little proof on planarity

n=15
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Simplifying the ¢=~=h% X
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Kuratowski's theorem

A finite graph is planar if and only if it does not contain a subgraph that is a
subdivision of the complete graph Ks or the complete bipartite graph Ks;
(utility graph).
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Other ways to pin down genus

More general bound for genus:

> |
v(G) = |1 5T 7




Thank you!

Did you manage to find all
the Rihannas and Rihanna
references? :

there were 8 of them
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