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Keep an eye out for Rihanna’s 
like this one! The others will be 

harder to find



Notation review
n the largest integer that can be used to create a sum/product

s-node
(sum node)

a node corresponding to the sum of two integers

p-node 
(product node)

a node corresponding to the product of two integers

 genus of graph G

G(n) the sum-product graph where n is the largest integer used to form sum and 
product nodes

Sum nodes 
will usually be 

in red/pink

and 
products will 

be in blue!



Before we get to the diamonds
n = 40



Diamond!!!!



Sum nodes and cycles
Every sum node greater than or equal to 14 will eventually connect into a 
cycle, as you let n grow larger.



Proof (even sum node case)
n = n0 the sum node might have leaves or 

other structures around it! 



continued…
n ≥ 2a-2



continued…
n ≥ 2a-2



continued…
n ≥ 2a-2

s0 > s1

2a > a-1+4 = a+3
a > 3

(remember s0 > 14  a > 7)⇒



continued…



n = 10

n = 12



What are diamonds?
They are the simplest cycle found in our sum and product graphs, more 
formally known as K2,2 



Mining (generating) diamonds
A =

B = 

C =

D =

E =

F =

G =

Restrictions:

A can be any number

B, C, D cannot have a common factor

E, F, G need to all be co-prime

BCE > BDF and BCE > CDG, otherwise we’ll 
have to do some reordering

ABDF ≠ ACDG ≠ CEG ≠ BEF



continuation…
r = ABCE t = ABDF v = ACDG z = ABCDEFG

s = DFG u = CEG w = BEF

a = r - s + t - u b = r - s - t + u

e = r - s + v - w f = r - s - v + w

c = r + s + t + u d = r + s - t - u

g = r + s + v + w h = r + s - v - w



Example diamond
A = 2

B = 3

C = 2

D = 1

E = 1

F = 1

G = 1

  estrictions:

A can be any number

B, C, D cannot have a common factor

E, F, G need to all be co-prime

BCE > BDF and BCE > CDG, otherwise we’ll 
have to do some reordering

ABDF ≠ ACDG ≠ CEG ≠ BEF



continuation…
r = 12 t = 6 v = 4 z = 12

s = 1 u = 2 w = 3

a = 15 b = 7

e = 12 f = 10

c = 21 d = 5

g = 20 h = 6

I also have a bit of 
code that makes this 
diagram for you!



Uses
● Main mess’ boundary

● Finding all Kn,m subgraphs



Main mess’ boundary
n = 40



Kn,m subgraphs
Almost every sum node is a part of a diamond

E.g sum nodes 16-59 are all a part of diamond for n = 40

It’s possible that Ka,b exists for all a,b  ∈ ℤ+ for some n

Ka,b subgraphs might also help pin down the genus of the sum-product graphs!

Genus formula for 
complete bipartite graphs



Genus of a graph
A planar graph is a graph that can be embedded in the plane, i.e., it can be 
drawn on the plane in such a way that its edges intersect only at their 
endpoints.

The genus of a graph is the minimal genus surface on which the graph can be 
embedded.

Planar (aka genus 0) graph utility graph
K3,3 of genus 1



A little proof on planarity
n = 15



Simplifying the graph



Simplified graph



Kuratowski's theorem
A finite graph is planar if and only if it does not contain a subgraph that is a 
subdivision of the complete graph K5 or the complete bipartite graph K3,3 
(utility graph).



Finding our utility



Other ways to pin down genus
More general bound for genus:



Did you manage to find all 
the Rihannas and Rihanna 
references?

Thank you!

there were 8 of them
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