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Abstract. Quantum metric spaces provide a framework that allows one to think of quantum error detection

and correction problems geometrically rather than purely algebraically. We are especially interested in

quantum metric spaces of Lie type – named so because they are constructed from representations of Lie
algebras – which are highly symmetric quantum metric spaces roughly analogous to homogeneous metric

spaces. We introduce the quantum error detection problem and give special attention to one method of

solving it due to Knill, Laflamme, and Viola. Using this method, we demonstrate the existence of large
error-detecting codes in certain quantum metric spaces of Lie type generated by representations of su(2)

and su(3). We also discuss and give examples of some even larger quantum codes that are constructed by

slightly modifying Knill, Laflamme, and Viola’s method.
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1. Introduction

Any classical (i.e. non-quantum) error correction or detection problem is equivalent to a sphere packing
problem in a certain metric space. Thinking about packing spheres in a metric space is a very useful tool for
understanding error correction problems. However, thinking about quantum error detection or correction
problems in this way is more difficult, because standard (henceforth classical) metric spaces can’t fully
account for the complexities of the quantum setting. In [KW12], Kuperberg and Weaver defined quantum
metric spaces, which are the objects that play the role analogous to classical metric spaces for quantum error
correction and detection problems. That is to say, quantum metric spaces are equipped with a notion of
distance that turns quantum error correction and detection problems into problems roughly analogous to
sphere packing.

In both the classical and quantum cases, it’s hard to say very much about error detection problems in
general spaces. The definition of a metric space is extremely broad, and this allows for the existence of many
pathological spaces that are difficult to work in. The same is true of quantum metric spaces. To get around
this, it’s common to restrict one’s attention to highly symmetric metric spaces. The analogous construct
in the quantum case is the notion of quantum metric spaces of Lie type. These are quantum metric spaces
constructed from representations of Lie algebras, and their symmetry properties make them much more
favorable for studying error detection problems.

The sections of this paper are organized as follows. In Section 2, we introduce classical error correction on
classical metric spaces to motivate the quantum case. We then introduce quantum metric spaces in Section
3, and explore some basic properties of these spaces. In Section 4, we define and examine quantum metric
spaces of Lie type. In Section 5, we introduce some basic quantum probability in order to cover the theory
of quantum codes and quantum error detection in these quantum metric spaces. In Section 6, we cover
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the method of Knill, Laflamme, and Viola in [KLV00] for constructing quantum codes in general quantum
metric spaces. We demonstrate that in certain quantum metric spaces of Lie type, we can exploit symmetry
properties to find much larger quantum codes than the bound given in [KLV00] would suggest. In particular,
for quantum metrics spaces constructed from irreducible string representations of su(3), we construct codes
of dimension roughly 4/27 the dimension of the whole space. In Section 7, we give a brief look at some
quantum codes that aren’t constructed with KLV’s method.

2. Classical error correction

Many classical error correction problems may be posed as follows. We start with a metric space (X, d)
thought of as a space of messages, where the distance reflects how similar two messages are to each other.
We assume errors take messages to nearby ones. A code is simply a subset C ⊆ X, and its minimum distance
d(C) is defined as

d(C) = inf
x,y∈C
x ̸=y

d(x, y)

If Alice sends a message to Bob from the code C and an error of size less than d(C) occurs, then the message
Bob receives will not be in C, since no element of C is within this distance of the original message. We say
such an error is detectable. Moreover, if an error of size less than d(C)/2 occurs, then Bob can determine
the original message by simply rounding to the nearest element of C. Such an error is said to be correctable.
Error correction and detection problems center on questions like the following: If we are looking for a code
of a given size, how large can its minimum distance be? Conversely, for a fixed minimum distance, how big
of a code can we find?

Supposing code C corrects t errors, if we place a ball of radius t at each x ∈ X, the triangle inequality
implies these balls will be disjoint. Indeed, finding a code in X that corrects t errors is equivalent to packing
spheres of radius t in X.

In general metric spaces, it’s quite difficult to make much progress on problems of this sort. More progress
can be made in metric spaces which are homogeneous, meaning for any x, y ∈ X, there exists an isometry of
X taxing x to y. Heuristically, these are the metric spaces that “look the same” at each point – each error
ball is the same shape. Even more favorable are 2-point symmetric metric spaces, meaning for any two pairs
(x1, x2), (y1, y2) ∈ X2 such that d(x1, x2) = d(y1, y2), there is an isometry of X taking x1 to y1 and x2 to y2
simultaneously.

In computer science contexts, this problem is most often studied in Hamming space, where the space
X = {0, 1}n consists of bit strings of a fixed length n, and the distance between two bit strings is the number
of positions in which they differ. If instead we let X be Rn with the Euclidean metric, the problem becomes
classical sphere packing.

The following example will prove useful later.

Example 2.1. Consider the metric space given by

∆(n, k) =

{
(x1, . . . , xk) ∈ Zk

∣∣∣∣∣ xi ≥ 0 for all i and

k∑
i=1

xi = n

}
,

and

d((x1, . . . , xk), (y1, . . . , yk)) =
1

2

k∑
i=1

|xi − yi|.

The condition
∑k

i=1 xi = n implies that all points in ∆(n, k) lie in a (k − 1)-dimensional hyperplane. The
points form a (k − 1)-dimensional simplicial lattice,1. In fact, d is a taxicab-like metric on this lattice,
meaning the distance between any two points in ∆(n, k) is the number of distance-1 steps one must take to
get between them.

A minimum distance 2 subset of ∆(n, k) is

T (n, k) =

{
(x1, . . . , xk) ∈ ∆(n, k)

∣∣∣∣∣
k∑

i=1

ixi = 0 (mod k)

}
1More precisely, this is a subset of the well-studied Ak lattice, also called a simplectic honeycomb shown in figure 1. In two

dimensions it is an equilateral triangular lattice, and in three dimensions it is a regular tetrahedral lattice.
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Figure 1. ∆(8, 3) shown in R3, and its projection into R2. The distance between any
two points is the minimum number of edges one must traverse to get between them in the
diagram.

It isn’t too difficult to see that no two elements of this subset are adjacent, so the minimum distance is
indeed 2.

3. Finite-dimensional quantum metric spaces

Quantum error correction problems do not initially appear analogous to classical ones. The notion of a
quantum metric space, (or W ∗ metric space), first defined in [KW12], bridges this divide, so that finding
error correcting codes reduces to packing error balls in quantum metric spaces.

Let H ∼= Cd be a finite-dimensional complex Hilbert space, and let L(H) ∼=Md(C) denote the set of linear
operators from H to itself. H is interpreted as the state space of a quantum system, and L(H) is interpreted
as the space of errors acting on states.

Definition 3.1. A quantum pseudometric on H is a ∗-algebra filtration {Vt} – that is, a vector subspace Vt

of L(H) for each t ∈ [0,∞) – satisfying

(1) I ∈ V0

(2) Vt = V∗
t

(3) VsVt ⊆ Vs+t

(4) Vt =
⋂

s>t Vs

A quantum pseudometric is said to be a quantum metric if V0 = span{I}. The parameter t is thought of as
cataloging the severity of errors: If s > t, elements of Vs are viewed as more severe errors than elements of
Vt.

In the definition above, t can vary continuously from 0 to ∞, but in the finite-dimensional case this is
somewhat misleading. Consider a ∗-algebra filtration {Vt} of H ∼= Cd. Note that dimL(H) = d2. For each
t ≥ 0, dimVt must be an integer between 1 and d2. Hence, there are a finite number of times Vt jumps up in
dimension as t increases. In practice, we only need to worry about these values of t, as for all other values
of t, Vt is equal to Vs for some s < t. For most quantum metric spaces we work with, these jumps occur at
integer values of t, so we only worry about some finite chain of subspaces V0 ⊂ V1 ⊂ · · · ⊂ Vn.

Given a quantum (pseudo-)metric (H, {Vt}), we can define a displacement gauge D : L(H) → [0,∞] by

D(X) = min{t ∈ [0,∞] | X ∈ Vt},
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where we follow the convention min∅ = ∞. Note that condition (4) of definition 3.1 implies that such a
minimum always exists. The properties of a quantum pseudometric imply D satisfies

(1) D(XY ) ≤ D(X) +D(Y )
(2) D(X + Y ) ≤ max{D(X), D(Y )}
(3) D(X∗) = D(X)
(4) D(αX) = D(X) if α ̸= 0
(5) D(I) = 0

If (H, {Vt}) is a quantum metric space, (5) may be replaced by the stronger condition

(5’) D(X) = 0 if and only if X = αI for some α ∈ C
One can recover the ∗-algebra filtration from its corresponding displacement gauge via the equation

Vt = {X ∈ L(H) | D(X) ≤ t}.
Thus, one may define a quantum metric space either in terms of a ∗-algebra filtration, or a displacement
gauge. We will pass between these definitions interchangeably.

Example 3.2. Quantum Hamming space on n qubits has H = (C2)⊗n ∼= C2n , which implies L(H) =
M2(C)

⊗n ∼=M2n(C). For each integer 0 ≤ t ≤ n, we have

Vt = span{X1 ⊗X2 ⊗ · · · ⊗Xn | X1, . . . , Xn ∈M2(C), Xi ̸= I for at most t terms}
The corresponding displacement gauge is defined on pure tensors by

D(X1 ⊗X2 ⊗ · · · ⊗Xn) = number of Xi’s not equal to the identity,

and extended to the rest of the space via properties (2) and (4).

Just as in the classical case, an isometry of a quantum metric space is a map from the space to itself that
preserves the metric. Precisely, the group of isometries is given by

Isom(H, {Vt}) = {U : H → H | U is unitary, and D(UXU∗) = D(X) for all X ∈ H}
We say a quantum metric space (H, {Vt}) is connected if D(X) is finite for all X ∈ L(H). Equivalently,

(H, {Vt}) is connected if and only if there is some t ∈ [0,∞) such that Vt is all of L(H). In this case, we call
this t the diameter of (H, {Vt}).

4. Quantum metrics of Lie type

We first define an very broad class of quantum metric spaces which are quantum analogs of graphs.

Definition 4.1. Let H = Cd. Any subspace E of L(H) ∼= Md(C) such that I ∈ E and E = E∗ is called an
error space.

Definition 4.2. Let H = Cd and let E be an error space. A quantum metric space of the form

V0 = spanC{I}, V1 = E , Vn = spanC EE · · · E︸ ︷︷ ︸
n

for each integer n ≥ 2,

is called a quantum graph metric. In this context, we refer to E as the edge space of the quantum metric.

Calling these “quantum graph metrics” is justified, since quantum metrics of this form are analogous to
the classical metrics on graphs given by path distance. In a graph, one specifies the set of points of distance
1, and the distance between any two points is the minimum number of distance 1 steps separating them.
The same procedure is used in the quantum analog.

Example 4.3. Quantum Hamming space, defined in example 3.2 is a quantum graph metric with edge space

E = span{X1 ⊗X2 ⊗ · · · ⊗Xn | X1, . . . , Xn ∈M2(C), Xi = I for all except 1 term}.

We now introduce quantum metrics of Lie type, as discussed in [Bum11].

Definition 4.4. Let gR be a Lie algebra with base field R, and let gC be its complexification. Let (H, ρ) be
a representation of gR such that ρ(gR) is traceless and antihermitian. Note that (H, ρ) may be extended to
a representation of gC. If we construct a quantum graph metric with edge space E = spanC{I} ⊕ ρ(gC), the
resulting metric is said to be of Lie type.
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Analogous to many constructions in algebra, there exist both internal and external descriptions of Lie type
quantum metric spaces. Above we have given the external description, where we construct a quantum metric
starting from a representation of a Lie algebra. The following proposition presents an internal description –
i.e. a condition for a quantum metric space being of Lie type.

Proposition 4.5. Suppose (H, {Vt}) is a quantum graph metric space with edge space E . Then (H, {Vt})
is of Lie type if and only if E is closed under the matrix Lie bracket.

Proof. The forward direction is clear. Suppose that E is closed under the matrix Lie bracket. Let

gC = {X ∈ E | tr(X) = 0} = E ∩ sl(d,C),

and

gR = {X ∈ E | tr(X) = 0, X∗ = −X} = E ∩ su(d).

Note that gC and gR are each Lie algebras since they are given by the intersection of two Lie algebras. Then
H is a representation of gR and gC with representation map ρ(X) = X. By construction, ρ(gR) is traceless
and antihermitian and E = spanC{I} ⊕ ρ(gC) as desired. □

Hence, we may equivalently define Lie type quantum metrics as those quantum graph metric spaces for
which the edge space is a Lie algebra.

Example 4.6. Quantum Hamming space is of Lie type, which can be verified by checking that the edge
space E of example 4.3 is closed under the Lie bracket. To see this more explicitly, we consider the Lie
algebra

gR = su(2)⊕ su(2)⊕ · · · ⊕ su(2)︸ ︷︷ ︸
n

and its complexification

gC = sl(2,C)⊕ sl(2,C)⊕ · · · ⊕ sl(2,C)︸ ︷︷ ︸
n

.

The representation of interest has H = (C2)⊗n and is given by

ρ(X1 ⊕X2 ⊕ · · · ⊕Xn) = X1 ⊗ I ⊗ · · · ⊗ I + I ⊗X2 ⊗ · · · ⊗ I + · · ·+ I ⊗ · · · ⊗ I ⊗Xn.

It’s clear that spanC{I} ⊕ ρ(gC) yields the edge space E of example 4.3.

Example 4.7. Consider the following representation of su(d) (and its complexification sl(d,C)). Let Hn =
C[x1, . . . , xd]n denote the space of homogeneous polynomials of degree n in x1, . . . , xd. For a matrix A =
(aij) ∈ sl(d) ⊆Md(C), define

ρ(A) =
∑

1≤i,j≤d

aijxj
∂

∂xi
.

This is an irreducible representation of su(d) and sl(d,C).
First consider the d = 2 case. We have Hn = spanC{xn, xn−1y, . . . , xyn−1, yn}. sl(2,C) is spanned by the

matrices

E =

[
0 1
0 0

]
, F =

[
0 0
1 0

]
, H =

[
1 0
0 −1

]
.

which get mapped to

ρ(E) = y
∂

∂x
, ρ(F ) = x

∂

∂y
, ρ(H) = x

∂

∂x
− y

∂

∂y
.

The effect of each of these operators is shown in the following diagram.

x3 x2y xy2 x2
3

3

2

1

1

1

2

−1

3

−3

In order to build a quantum metric space from this representation, we first need to put a Hilbert space
structure ⟨·, ·⟩ on Hn. The most natural way to do this is to make {xn, xn−1y, . . . , xyn−1, yn} an orthogonal
set, and to require that ρ(E)∗ = ρ(F ). This means〈

ρ(E)xkyn−k, xk−1yn−k+1
〉
=

〈
xkyn−k, ρ(F )xk−1yn−k+1

〉
,
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which implies 〈
xk−1yn−k+1, xk−1yn−k+1

〉
=
n− k + 1

k

〈
xkyn−k, xkyn−k

〉
.

Up to a global constant factor, this implies〈
xkyn−k, xkyn−k

〉
=

(
n

k

)
.

Hence, we define |k, n− k⟩ = 1√
(nk)

xkyn−k, and impose the inner product on Hn in which {|k, n− k⟩ |0 ≤

k ≤ n} is an orthonormal basis. In this new basis, we can compute

ρ(E) |k, n− k⟩ =
√
k(n− k + 1) |k − 1, n− k + 1⟩

ρ(F ) |k, n− k⟩ =
√
(k + 1)(n− k) |k + 1, n− k − 1⟩

ρ(H) |k, n− k⟩ = (n− 2k) |k, n− k⟩

Our diagram now looks like this:

|30⟩ |21⟩ |12⟩ |03⟩
√
3

3

2

1

√
3

−1 −3

Note that we’ve combined the arrows for E and F , since their respective coefficients are the same in this
normalization. This yields a quantum metric space of Lie type with

V1 = E = spanC{I} ⊕ ρ(sl(2,C)).

In particular, the distance one errors are the ones shown by arrows in the diagram.
We can go through an analogous process for su(d) with larger values of d. In particular, we define the

basis vectors

|a1 · · · ad⟩ =
1√(
n

a1,...,ad

)xa1
1 · · ·xad

d ,

where a1 + · · ·+ ad = n, and give Hk an inner product where this basis is orthonormal. We may build a Lie
type quantum metric (Hn, {Vt}) where

V1 = E = spanC{I} ⊕ ρ(sl(d,C)).

In particular, distance 1 errors are either diagonal, or they take vectors to adjacent ones in the diagram in
figure 2. Note that basis vectors for Hn are indexed by elements of ∆(n, d), and that the diagram in figure
2 looks very similar to the metric space ∆(n, d) in figure 1.

z3

xz2 yz2

x2z xyz y2z

x3 x2y xy2 y3

3

3

2

2

1

1

2

2
1

1

1

1

2

2

1

1
1

1
1

1

1

1
2

2

3

3

1

2

2

1

2

1

1

2

3

3

|003⟩

|102⟩ |012⟩

|201⟩ |111⟩ |021⟩

|300⟩ |210⟩ |120⟩ |030⟩

√
3

√
2

1

√
3

2

1

√
2

2

√
2

√
2

√
2

√
3

√
3

√
3

√
2

2

1

√
3

Figure 2. Diagrams for representation H3 of su(3), unnormalized on left and normalized
on right. Diagonal operators are not shown.



QUANTUM ERROR DETECTION AND LIE THEORY 7

One motivation for studying quantum metric spaces of Lie type is that they have much more symmetry
than general quantum metric spaces. In fact, their isometry groups are very closely related to the Lie algebras
they are built from.

Suppose A ∈Mn(C) is an isometry of (H, {Vt}). Hence A is unitary and AV1A
−1 = V1. As tr

(
AXA−1

)
=

tr(X), AgCA
−1 = gC. And, since A is unitary, (AXA−1)∗ = AX∗A−1. Hence, X is anti-hermitian if and

only if AXA−1 is. Thus AgRA
−1 = gR. Thus, elements of Isom(H, {Vt}) each yield automorphisms of gR

by conjugation.
For a matrix X, define the map ΨX : gR → gR by ΨX(Y ) = XYX−1. By our observation above Ψ is

a homomorphism from Isom(H, {Vt}) to Aut(gR). If G denotes the lie group corresponding to gR, then Ψ
gives the well-known adjoint representation Ad of G, which is a homomorphism from G into Aut(gR). The
fact that Ψ yields a homomorphism from both G and Isom(H, {Vt}) into Aut(gR) tells us that these groups
are very closely related. Often, these groups coincide exactly, or one is a large subgroup of the other.

Below is another nice property of quantum metric spaces of Lie type that relates their geometry to their
algebraic structure.

Theorem 4.8. Suppose (H, {Vt}) is a quantum metric space of Lie type with underlying Lie algebra gR and
representation map ρ. (H, {Vt}) is connected if and only if H is an irreducible representation of gR.

In both the classical and quantum cases, error correction problems in disconnected metric spaces are less
interesting. Finding codes in disconnected spaces involves finding codes in each of the connected components
separately. In light of this the theorem above, we will restrict our attention to those in which the underlying
representation is irreducible.

5. Quantum codes and error detection

In quantum probability, a boolean measurement – i.e. a question of the system with a yes or no answer –
is specified by an orthogonal projection P : H → H. If C is the image of P , the boolean measurement asks
whether a state |ψ⟩ is in C or not. Given a normalized state |ψ⟩ ∈ H, the probability of “yes” is the squared
magnitude of the component of ψ in C. That is,

Pr[yes] = ⟨ψ|P |ψ⟩ .

The resulting (unnormalized) state is P |ψ⟩. It’s customary to rescale this state to obtain a normalized one,
but for our purposes this isn’t necessary. Similarly, the probability of “no” is the squared magnitude of the
component of |ψ⟩ in the orthogonal complement of C, and resulting unnormalized state is the projection of
|ψ⟩ onto that orthogonal complement, (i.e. (I − P ) |ψ⟩).

A quantum code C is simply a subspace of H, which we interpret as the space of messages we can send. Let
PC ∈ L(H) denote the orthogonal projection onto this subspace. The basic procedure for error detection is
as follows. Suppose Alice wish to send the state |ψ⟩ ∈ C to Bob, and an error E ∈ L(H) occurs so that E |ψ⟩
is received. Bob applies the boolean measurement associated with PC to determine whether his received
message is in the C. If he measures “no,” then the error is detected. Otherwise, if he measures “yes,” the
resulting state is PCE |ψ⟩, which must be proportional to |ψ⟩ for the correct message to be received. Thus,
C detects E if

PCE |ψ⟩ ∝ |ψ⟩
for all |ψ⟩ ∈ C. An equivalent formulation is that C detects an error E if there exists an ε ∈ C such that

PCEPC = εPC .

If E is an error space, we say C detects errors from E (or simply detects E) if the above condition holds for
all E ∈ E . Since the left-hand-side is linear in E, the right-hand-side must also be. Hence, C detects E if
and only if there exists a linear map ε : E → C such that

(1) PCEPC = ε(E)PC

for all E ∈ E . This function ε is called the slope of the code C, and the equation above is called the error
detection condition. We say C detects errors of distance t if this condition holds for E = Vt. Just as in the
classical case, we say C corrects errors of distance t if it detects errors of distance 2t. If this is the case, there
exists a procedure for recovering the original state if an error of distance ≤ t occurs.
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Although the error detection condition presented above is quite compact, it is somewhat difficult to work
with. Here we present an equivalent formulation that is sometimes more useful. Suppose {|ψ1⟩ , . . . , |ψn⟩} is
an orthonormal basis for C. Using the fact that PC =

∑n
i=1 |ψi⟩ ⟨ψi|, we can compute

PCEPC =
∑

1≤i,j≤n

⟨ψi|E |ψj⟩ |ψi⟩ ⟨ψj | .

Hence, the error detection condition holds if and only if

(2) ⟨ψi|E |ψj⟩ = ε(E)δij

for all i and j.
The following proposition relates error detecting codes in subspaces of H to the whole space, and we will

rely on it heavily in the next section.

Proposition 5.1. Let H ∼= Cd and let E ⊆ L(H) be an error space. Let B be a subspace with orthogonal
projection PB, and let F = PBEPB. Note that F may be interpreted as an error space on B given by
restricting E to B. Then, if a code C ⊆ B detects F , it detects E .

Proof. Since C corrects F , there exists a slope ε0 : F → C such that

PCFPC = ε0(F )PC for all F ∈ F .
Since C ⊆ B, PCPB = PBPC = PC . Using this fact, we see that for any E ∈ E

PCEPC = PC(PBEPB)PC

= ε0(PBEPB)PC .

Hence, if we define ε : E → C by ε(E) = ε0(PBEPB), we have PCEPC = ε(E)PC as desired. □

6. KLV codes

In [KLV00], Knill, Laflamme, and Viola gave a method for constructing codes that can detect errors from
any Vt in any quantum metric space by transforming the problem to convex geometry.2 In this section, we’ll
lay out that construction and go through some examples for Lie type quantum metric spaces. First, we
introduce some preliminary results for this construction.

Definition 6.1. Let {p⃗1, . . . , p⃗n} be a collection of n points in Rd. Suppose we partition the index set
{1, 2, . . . , n} into sets Y1, . . . , Yr such that

r⋂
j=1

conv{p⃗i | i ∈ Yj} ≠ ∅.

If the above condition holds, we call the collection {Yj}rj=1 a Tverberg partition, and we call any point

ε⃗ ∈
⋂r

j=1 conv{p⃗i | i ∈ Yj} a Tverberg point. A Tverberg partition is called maximal if there does not exist
another Tverberg partition of the same points into more parts.

Although we define a Tverberg partition as a particular set partition on the index set, in an abuse of
notation we often speak about partitioning the vectors themselves into sets rather than their indices. The
following remarkable theorem due to Tverberg gives a lower bound on the number of parts in a maximal
Tverberg partition. [Tve66]

Theorem 6.2 (Tverberg’s Theorem). For any set of n points in Rd, there exists a Tverberg partition with
⌈n/(d+ 1)⌉ parts.

KLV’s construction goes as follows. Let H ∼= Cn be a Hilbert space and suppose we wish to find a code
C ⊆ H that detects the error space E . First, find a subspace B with projector PB such that F = PBEPB is

commutative. A greedy argument shows that there exists a such a space space B of dimension b ≥
⌈

dimH
dim E−1

⌉
.

Next, we look for a code C ⊆ B that detects the commutative error space F ⊆ L(B). As F = F∗, F has a
self-adjoint basis {I, F1, . . . , Fd}. Since these errors commute, there is an orthonormal basis {|m⟩}bm=1 for B in

2In their paper, they addressed slightly different structures called quantum graphs, but these can be readily identified with
quantum graph metric spaces. Their construction applies equally well to all quantum metric spaces, not just quantum graph

metric spaces, so we present the most general case.
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p⃗6

p⃗2

p⃗9

p⃗7

p⃗1

p⃗5

p⃗8

p⃗3

p⃗10

p⃗4

ε⃗

Figure 3. A Tverberg partition of 10 points in the R2 with Tverberg point ε⃗ and sets
Y1 = {1, 5, 7}, Y2 = {2, 6, 9}, Y3 = {3, 8}, and Y4 = {4, 10}.

which all errors are diagonal. To each basis vector |m⟩, we can associate a vector λ⃗m = (λ
(1)
m , . . . , λ

(d)
m ) ∈ Rd,

where λ
(j)
m is the eigenvalue of |m⟩ for the matrix Fj .

To find a code C inside B, we find a Tverberg partition {Yj}rj=1 for the set {λ⃗m}bm=1. Let ε⃗ = (ε1, . . . , εd)

be a Tverberg point for this partition. For each Yj , since ε⃗ ∈ conv{λ⃗m | m ∈ Yj}, there exist coefficients
αjm ∈ [0, 1] such that ∑

m∈Yj

αjmλ⃗m = ε⃗, and
∑
m∈Yj

αjm = 1.

Consider the vector |ψj⟩ ∈ B given by

|ψj⟩ :=
∑
m∈Yj

√
αjm |m⟩ .

We claim that the code C = spanC{|ψj⟩}rj=1 detects F . By construction, the basis {|ψj⟩}rj=1 is orthonormal,
so we may check condition (2). Indeed,

⟨ψj |Fl |ψj⟩ =
∑
m∈Yj

∑
m′∈Yj

√
αm′αm ⟨m′|Fl |m⟩

=
∑
m∈Yj

∑
m′∈Yj

√
αm′αmλ

(l)
m ⟨m′|m⟩

=
∑
m∈Yj

αmλ
(l)
m

= εl.
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And, if j ̸= k,

⟨ψj |Fl |ψk⟩ =
∑
m∈Yj

∑
m′∈Yk

√
αmαm′ ⟨m′|Fl |m⟩

=
∑
m∈Yj

∑
m′∈Yk

√
αm′αmλ

(l)
m ⟨m′|m⟩

= 0.

The last equation holds because Yj and Yk are disjoint, so ⟨m′|m⟩ for all m ∈ Yj and m′ ∈ Yk. Hence the
error detection condition holds, so C detects F . By proposition 5.1, C detects E , as desired.

Notice that dim C is the number of parts in the Tverberg partition of {λ⃗m}nm=1. Tverberg’s theorem

asserts that there exists a partition into
⌈

b
d+1

⌉
=

⌈
dimB
dimF

⌉
parts. However, this partition is not necessarily

maximal, meaning we may be able to find a Tverberg partition with many more parts, which would allow
us to construct a larger code.

KLV uses the facts that dimF ≤ dim E and dimB ≥
⌈

dimH
dim E−1

⌉
to obtain the bound

(3) dim C ≥
⌈

1

dim E

⌈
dimH

dim E − 1

⌉⌉
=

⌈
dimH

dim E(dim E − 1)

⌉
.

However, this is often deceptively low if H is a Lie type quantum metric space. In these cases, we can often
find a subspace B much larger than the greedy algorithm suggests. Also, dimF is often much smaller than

dim E . And finally, we may be able to find a partition of {λ⃗m}bm=1 that is significantly larger than the one
Tverberg’s theorem guarantees. In the following examples, we see all three of these advantages playing out.

Example 6.3. Consider the representation Hn of su(2) described in example 4.7. An example is shown
below with n = 8.

|80⟩ |71⟩ |62⟩ |53⟩ |44⟩ |35⟩ |26⟩ |17⟩ |08⟩2
√
2

8

√
14

6

3
√
2

4

2
√
5

2

2
√
5

0

3
√
2

−2

√
14

−4

2
√
2

−6 −8

We will construct a distance 1 error-detecting code in this metric space, following [Bum11]. Consider the
subspace

B = spanC{|n− k, k⟩ | k is even},

shown in the diagram below by all the boxed vectors.

|80⟩ |71⟩ |62⟩ |53⟩ |44⟩ |35⟩ |26⟩ |17⟩ |08⟩2
√
2

8

√
14

6

3
√
2

4

2
√
5

2

2
√
5

0

3
√
2

−2

√
14

−4

2
√
2

−6
−8

Recall that E = spanC{I, ρ(E), ρ(F ), ρ(H)}. Notice that ρ(E) maps each basis vector one space to the right
in the above diagram. Hence, it maps each vector in B to something orthogonal to B, so PBρ(E)PB = 0.
The same holds for ρ(F ), so PBρ(F )PB = 0. Hence,

F = PBEPB = spanC{I, PBρ(H)PB}.

As I and PBρ(H)PB commute, F is commutative as desired. Notice that dimB =
⌈
dimHn

2

⌉
, whereas the

greedy argument employed by KLV only guarantees the existence of such a a subspace of size
⌈

dimHn

dim E−1

⌉
=⌈

dimHn

3

⌉
.

As F is already diagonal, no change of basis is required. Since the basis {I, PBρ(H)PB} only has 1 non-

identity error, the associated vector of eigenvalues for each vector |k, n− k⟩ – which we call λ⃗k – will only

have one coordinate. Since PBρ(H)PB |k, n− k⟩ = n− 2k, we have λ⃗k = (n− 2k) ∈ R1. For H8, this set of
vectors in R1 is shown below.

λ0λ2λ4λ6λ8
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To find a code C inside B, we search for a Tverberg partition of these λ⃗k’s. One such partition can be
constructed by pairing the smallest λi with the largest, then the second smallest with the second largest,
and so on. If there are an odd number of vectors, we can take a singleton containing the last vector in
the middle. This yields a Tverberg partition with

⌈
dimB

2

⌉
parts, which is equal to the bound given by

Tverberg’s theorem. This can be seen to be optimal, since any larger partition would need to contain at
least two singletons. However, no Tverberg partition of these points can have more than one singleton, as
no two λi’s coincide.

Hence, we have constructed a code of dimension
⌈
dimB

2

⌉
=

⌈
1
2

⌈
dimHn

2

⌉⌉
=

⌈Hn

4

⌉
. A naive application of

KLV’s bound would tell us there exist codes of dimension
⌈

dimHn

dim E(dim E−1)

⌉
=

⌈
dimHn

12

⌉
. By carefully choosing

B, we were able to improve this bound.

Example 6.4. Now, consider the representation Hn of su(3). Recall that we can think of our basis vectors
|a1a2a3⟩ as being indexed by all elements (a1, a2, a3) ∈ ∆(n, 3). Distance t errors take |a1a2a3⟩ to vectors
indexed by elements of distance ≤ t from (a1, a2, a3) in ∆(n, 3). In particular, if we take a minimum distance
t + 1 subset of ∆(n, 3), then no error E ∈ Vt will take an element of this subset to a different element of
the subset. Hence, if we take B to be spanned by these vectors, we have PBEPB = 0 for all non-diagonal
E ∈ Vt. Hence PBVtPB will be diagonal.

|006⟩

|015⟩ |105⟩

|024⟩ |114⟩ |204⟩

|033⟩ |123⟩ |213⟩ |303⟩

|042⟩ |132⟩ |222⟩ |312⟩ |402⟩

|051⟩ |141⟩ |231⟩ |321⟩ |411⟩ |501⟩

|060⟩ |150⟩ |240⟩ |330⟩ |420⟩ |510⟩ |600⟩

Figure 4. Diagram of H6 for su(3). Boxed vectors are the basis vectors for B, and are
indexed by elements of T (6, 3).

Recall the minimum distance 2 subset T (n, 3) of ∆(n, 3) described in example 2.1. Taking B to be spanned
by these basis vectors, we get subspace of dimension dim(Hn)/3 +O(1). Explicitly, we have

B = span{|a1a2a3⟩ : (a1, a2, a3) ∈ T (n, 3)} = span{|a1a2a3⟩ : a1 − a2 ≡ 0 (mod 3)}.
As argued above, PBEPB = 0 for all non-diagonal E ∈ V1. It’s clear from the definition of ρ that E is
diagonal if and only if ρ(E) is. It follows that the diagonal elements of V1 are spanned by ρ(D1), ρ(D2), and
ρ(D3), where

D1 =

1 0 0
0 0 0
0 0 0

 , D2 =

0 0 0
0 1 0
0 0 0

 , D3 =

0 0 0
0 0 0
0 0 1

 .
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Hence PBV1PB = spanC{PBρ(D1)PB, PBρ(D2)PB, PBρ(D3)PB}.
Note that ρ(D1) |a1a2a3⟩ = a1, ρ(D2) |a1a2a3⟩ = a2, and ρ(D3) |a1a2a3⟩ = a3. Hence, the vector of

eigenvalues associated with (D1, D2, D3) for |a1a2a3⟩ is (a1, a2, a3) ∈ ∆(n, 3). However, note that when we
construct vectors of eigenvalues to look for a Tverberg partition as on page 8, we can disregard the identity
error – that is, we find a basis {I, F1, . . . Fd} for PBVtPB, and only consider eigenvalues for F1, . . . Fd,
meaning our vectors lie in Rd. In this case, this means we only need to consider vectors in R2 instead of
(a1, a2, a3) ∈ ∆(n, 3) ⊆ R3, and this corresponds exactly to the projection of ∆(n, 3) into R2 mentioned in
example 2.1.

One particularly nice basis for this is given by {I, PBρ(F1)PB, PBρ(F2)PB}, where

F1 =

−1/2 0 0
0 1/2 0
0 0 0

 , F2 =

−√
3/6 0 0

0 −
√
3/6 0

0 0
√
3/3

 .
The eigenvalues for these operators are

ρ(F1) |a1a2a3⟩ =
1

2
(a2 − a1) |a1a2a3⟩ ,

ρ(F2) |a1a2a3⟩ =
√
3

6
(2a3 − a1 − a2) |a1a2a3⟩ .

Let λ⃗a1a2a3 = ( 12 (a2 − a1),
√
3
6 (2a3 − a1 − a2)) be the vector of eigenvalues of ρ(F1) and ρ(F2) for |a1a2a3⟩.

The set of all such vectors in R2 for all basis vectors in B is shown below.

Eigenvalue of ρ(F1)

Eigenvalue of ρ(F2)

λ⃗600

λ⃗303

λ⃗006

λ⃗411

λ⃗114

λ⃗222

λ⃗330

λ⃗033

λ⃗141

λ⃗060

Figure 5. Vectors of eigenvalues for B ⊆ H6. The eigenvalue vectors for basis vectors of
H6 not in B are shown in grey.

Now, we need to find a Tverberg partition of these points. If we call the number of points b, then
Tverberg’s theorem asserts that there exists a Tverberg partition with ⌈b/3⌉ parts. However, since these
points are arranged in a very orderly lattice – a projection of T (n, 3) into R2 – we can show there exists a
partition with approximately 4b/9 parts. Such a partition is constructed as follows.

For this construction, we restrict our attention to the case where n is a multiple of 3, so let m = n/3.

• Choose ε⃗ = (0, 0) = λ⃗mmm to be the slope of the code. Take the singleton {λmmm} in the partition.



QUANTUM ERROR DETECTION AND LIE THEORY 13

• For each λ⃗a1a2a3 such that a1, a2, a3 ≤ 2m, let b1 = 2m− a1, b2 = 2m− a2, and b3 = 2m− a3. It’s

clear that |a1a2a3⟩ ∈ B implies |b1b2b3⟩ ∈ B, so λ⃗b1b2b3 is a vector in the set we’re partitioning. We

then take the pair {λ⃗a1a2a3
, λ⃗b1b2b3} in the partition. Note that these points are chosen to be on

opposite sides of ε⃗ – that is,

1

2
(λ⃗a1a2a3

+ λ⃗b1b2b3) = λ⃗mmm = ε⃗.

So, ε⃗ is in the convex hull of this set.

• Finally, suppose λ⃗a1a2a3
does not satisfy a1, a2, a3 ≤ 2m. If |a1a2a3⟩ ∈ B, then |a2a3a1⟩ ∈ B and

|a3a1a2⟩ ∈ B.3 We take the 3 element set {λ⃗a1a2a3
, λ⃗a2a3a1

, λ⃗a3a1a2
} to be in the partition. Note that

1

3
(λ⃗a1a2a3

+ λ⃗a2a3a1
+ λ⃗a3a1a2

) = λ⃗mmm = ε⃗,

so ε⃗ is in the convex hull of this set.

By construction, this partition is Tverberg. To compute the number of parts, note that the fraction of
λa1a2a3

such that a1, a2, a3 ≤ 2/3n approaches 2/3 + O(1/n). Hence, if we employ the construction above,
roughly 2/3 of the points are in sets of size 2, and roughly 1/3 of them are in sets of size 3. Hence, the total
number of parts in the partition is 2b/3(1/2) + b/3(1/3) +O(n) = 4b/9 +O(n), as desired.

λ⃗600

λ⃗303

λ⃗006

λ⃗411

λ⃗114

λ⃗222

λ⃗330

λ⃗033

λ⃗141

λ⃗060

Figure 6. Left: Tverberg partition for finding a code inside B ⊆ H6. The sets in the

partition are {λ⃗222}, {λ⃗033, λ⃗411}, {λ⃗303, λ⃗141}, {λ⃗330, λ⃗114}, and {λ⃗600, λ⃗060, λ⃗006}.

Right: Tverberg partition for a larger example, B ⊆ H12. Notice that this parti-
tion consists of 14 parts, whereas Tverberg’s theorem only guarantees the existence of a
Tverberg partition with 11 parts.

7. Non-diagonal codes

Constructing KLV codes involves choosing a subspace B such that PBVtPB is diagonal in some basis.
However, we can in some cases find larger codes by picking B so that PBVtPB is block diagonal with small

3This only holds whenever n is a multiple of 3. Recalling that |a1a2a3⟩ ∈ B if and only if a1 − a2 ≡ 0 (mod 3) and
a1 + a2 + a3 = n, we see that if |a1a2a3⟩ ∈ B,

a2 − a3 = a2 − (n− a1 − a2) = a1 + 2a2 − n ≡ a1 − a2 ≡ 0 (mod 3),

so |a2a3a1⟩ ∈ B. A very similar argument shows |a3a1a2⟩ ∈ B
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blocks. In this case, more work needs to be done to guarantee that the code satisfies the error detection
condition.

This technique and the code in example 7.1 were pioneered by Rui Okada, a PhD student who helped
tremendously with this project. These results appear in his work in preparation.

Example 7.1. Consider the metric space generated by the representation Hn of su(2) of example 4.7, and
assume n = 6m for some m. Recall that the distance 1 errors in this quantum metric space are spanned
{ρ(E), ρ(F ), ρ(G)}, where

ρ(E) |k, n− k⟩ =
√
k(n− k + 1) |k − 1, n− k + 1⟩

ρ(F ) |k, n− k⟩ =
√
(k + 1)(n− k) |k + 1, n− k − 1⟩

ρ(H) |k, n− k⟩ = (n− 2k) |k, n− k⟩

In example 6.3 we saw that KLV’s construction yields a code of dimension
⌈
dimHn

4

⌉
. Here we show a

non-diagonal code of dimension dimHn

3 +O(1).
Choose B to be spanned by the vectors |a, b⟩ for which |a− b| is congruent to 0 or 2 mod 3, shown boxed

in the diagram below.

|60⟩ |51⟩ |42⟩ |33⟩ |24⟩ |15⟩ |06⟩
√
6

6

√
10

4

2
√
3

2

2
√
3

0

√
10

−2

√
6

−4 −6

Recalling that n = 6m, notice that dimB = 4m+ 1. For each j from 1 to m,

|ϕj⟩ = αj |3m+ 3j, 3m− 3j⟩+ βj |3m− 3j + 1, 3m+ 3j − 1⟩
and

|ψj⟩ = αj |3m− 3j, 3m+ 3j⟩ − βj |3m+ 3j + 1, 3m− 3j − 1⟩ ,
where

αj =
√

3j+1
6j+1 , βj =

√
3j

6j+1 .

We claim that the code

C = spanC{|3m, 3m⟩ , |ϕ1⟩ , |ϕ2⟩ , . . . , |ϕm⟩ , |ψ1⟩ , |ψ2⟩ , . . . , |ψm⟩}
detects errors of distance 1. To see this, one could check equation (2) for each of ρ(E), ρ(F ) and ρ(H). Note
that dim C = 2m+ 1 is approximately 1/3 the dimension of Hn, as claimed.

It is very likely that a similar technique can be employed to find larger error detecting codes in su(3)
quantum metric spaces than the one described in section 6. Further work is required to nail down details of
such a construction and the determine dimension of the resulting code.
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