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1 Abstract
RNA viruses cause deadly and prolific diseases such as HIV and SARS-CoV-2. One of the

primary challenges of treating RNA viruses is their rapid and unpredictable mutations [14]. RNA
viruses are subject to random mutations over generations, but also more complex mutations broadly
termed recombination events [4]. The standard method for modelling evolution in RNA viruses
is phylogenetic trees [12], however phylogenetic trees are ineffective at modelling recombination
events. Persistent homology is a topological data analysis method that has been found to be ef-
fective in modelling and detecting recombination events of RNA viruses [3] [5]. The goal of this
project was to measure the effectiveness of persistent homology in detecting recombination through
simulation of viral evolution. A simulation of viral evolution was developed which applies point
mutations and recombination events to a population of RNA viruses. The resulting simulated data
was analyzed using persistent homology to test the detection of the recombination events. The
simulations suggested that persistent homology is variable in its detection of recombination and
that certain measures of homology are preferable to others in the use of persistent homology.

2 Prior Work
In 2013, Chan, Carlsson, and Rabadàn published Topology of Viral Evolution [3], which intro-

duced the use of persistent homology to model recombination in RNA viruses. While persistent
homology as a tool in topological data analysis had existed prior to this study[11], Chan et al. were
the first to use it to analyze RNA sequences. Since the publishing of Topology of Viral Evolution,
there have been other studies which have built upon their work on the use of persistent homology
in this setting.

The paper by Chan et al. provided a comprehensive analysis of the use of persistent homology
to detect recombination. In addition to detecting recombination, they analyzed RNA viruses like
the flu, where reassortment events can occur. Reassortment is another type of mutation that is not
well modelled by phylogenetic trees. As a foundation to the use of persistent homology, Chan et
al. proved mathematical justification that trees fail to model reassortment or recombination events.
In particular, it was showed that the homology of any metric space well modelled by a tree must
have trivial homology. Chan et al. introduced the idea that irreducible cycles represent one or more
recombination/reassortment events, which is the main idea behind this work.
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In Theresa Diaz’ Thesis [5], persistent homology was applied to more RNA viruses such as
MERS, SARS-CoV-2 and avian influenza. This paper was motivated and supported by Theresa’s
work. Camara et al. [2] modelled recombination in humans and expanded on the methodology
introduced by Chan et al. Humphreys et al. [10] introduced a biologically inspired modification of
persistent homology to better bring together the topological tools and biological setting.

3 Biological Background

3.1 RNA
DNA is a molecule that stores the genetic information for most organisms, including plants,

animals, and fungi. Some viruses store and transfer their genetic material through DNA, but other
types of viruses use RNA. DNA is composed of four nucleotides: guanine, thymine, adenine, and
cytosine, which are denoted by G,T,A, and C respectively. RNA is also composed of four nu-
cleotides: guanine, uracil, adenine, and cytosine, which are denoted by G,U,A, and C respectively.
For this research, RNA can be thought of as a string of the letters G,U,A,C, so an example RNA
sequence could be:

AGUACUGGCA

All of the genetic information of a RNA virus can be encapsulated in such a string, which vary
in length. For instance, SARS-CoV-2 viruses are comprised of about 30,000 nucleotides in their
RNA sequence [17], while HIV viruses are comprised of roughly 9,500 [8]. The goal of this
project was to model the evolution of a virus given a set of RNA sequences.

3.2 Point Mutations
A common evolutionary event in viruses is called a point mutation, where a single nucleotide

is swapped to another [6]; an example is indicated in the following expression:

AGUACUGGCA =⇒ AGUAAUGGCA

Point mutations are generally well modeled with traditional modelling techniques [3].

3.3 Recombination
Recombination is a more complex mutation that can occur within the genetic code of an RNA

virus, where an entire fragment of genetic code is modified in a single mutation [15]. An example
of recombination is illustrated in the following expression:

AGUACUGGCA =⇒ AGGUCAUGC

In this instance, the nucleotides are replaced in the reverse order, which is called an inversion
recombination. Recombination events are generally not well modeled or understood by traditional
evolutionary modelling techniques. The overall goal of this project was to study existing models
designed to detect recombination events in SARS-CoV-2.
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4 Tracking Viral Evolution

4.1 Hamming Distance

Figure 1: Failure of phylogenetic tree to model
recombination.

Hamming distance is a metric on genetic
sequences defined by the number of differ-
ences in their nucleotide strings. Hamming
distance is denoted by d and illustrated in the
following examples:

d(ACUUGC,ACGUGC) = 1

d(ACUUGC,ACGUGA) = 2

4.2 Phylogenetic Trees
Phylogenetic trees are a standard struc-

ture to model genetic evolution [12]. There
exist many algorithms to compute phyloge-
netic trees. In general, these algorithms place
genetic sequences closer together if they are
more likely to be genetically related. Be-
cause Hamming distance correlates to genetic closeness, basic phylogenitc algorithms tend to
construct a tree based on Hamming distance. An example of a phylogenetic tree can be seen
in Figure 1. Phylogenetic trees constructed from Hamming tend to model point mutations well
because sequences that are close in Hamming distance tend to have few point mutations between
them. However, recombination can result in a sequence far away in Hamming distance from the
original sequence. Consider the following example where a recombination occurs between two
sequences:

AGCUCG, UGCUAG recombination
========⇒ ACUAGG

In this case, the sequence ACUAGG resulting from recombination is not close in Hamming distance
to the sequences it originated from, so the resulting phylogenetic tree will not accurately represent
the genetic mutation. This is illustrated in Figure 1, where the resulting sequence is placed on the
opposite side of the tree of its parent sequences.

Even if a different algorithm for constructing the tree was used, there are still issues with
representing recombination using phylogenetic trees. Recombination oftentimes occurs between
more than one virus at a time [15], but trees can only represent a single parent for each sequence.
In fact, from a theoretical standpoint, phylogenetic trees are provably insufficient to represent
recombination events [3]. Thus, there is a need for additional evolutionary models.
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5 Simplicial Homology
The evolutionary model that will be studied in this project comes from topological data anal-

ysis (TDA), which is an area in data analysis which seeks to analyze data with techniques from
topology. The model of interest is based on the topological structures from simplicial homology
[3]. In this section, the mathematical background necessary to understand this model will be intro-
duced.

5.1 Simplices

Figure 2: A 0-simplex, 1-
simplex, and 2-simplex.

An n-simplex is a topological structure that generalizes
a triangle [9]. In particular, an n-simplex is the smallest
convex set in Rm for m≥ n that contains n+1 distinct points
v0,v1, . . . ,vn such that each of the vectors

v1− v0,v2− v0, . . . ,vn− v0

are all linearly independent. Thus, a 2-simplex is a trian-
gle, a 3-simplex a tetrahedron, and so on. The points vi are
called the vertices of the n-simplex. An n-simplex with ver-
tices v0,v1, . . . ,vn will be denoted [v0,v1, . . . ,vn] [9]. When
computing homology the ordering of the vertices is impor-
tant, so an ‘n-simplex’ refers to a collection of n+1 vertices
with a specific ordering [9].

Removing a single vertex from an n-simplex σ = [v0,v1, . . . ,vn] results in an (n− 1)-simplex de-
noted by [v0,v1, . . . , v̂i, . . . ,vn] called a face of σ . The union of all faces of an n-simplex is called
the boundary of the simplex σ and is written as ∂σ .

5.2 Simplicial Complexes

Figure 3: An example of a sim-
plicial complex.

A simplicial complex K is a finite collection of simplices
such that:

1. For each simplex σ ∈ K and each face τ ⊂ σ of σ , τ

is also a simplex of K.

2. The intersection σ1∩σ2 of any two simplices σ1,σ2 ∈
K is another simplex in K.

3. The interior σ \∂σ of each simplex σ ∈ K is disjoint
from every other simplex in K.

These conditions ensure that the simplices in a simplicial
complex do not puncture one another or overlap in uneven
sections. In particular, this structure ensures that the topol-
ogy on a simplicial complex can be defined by a quotient
map on its simplices. Figures 3 and 4 provide a pictorial
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intuition for simplicial complexes. Figure 3 is a simplicial
complex with two 2-simplices, five 1-simplices, and five 0-simplices. Notice that simplices may
be disjoint.

Figure 4: An example of a col-
lection of simplices failing to be
a simplicial complex.

However, the set of simplices as is the case in Figure 4
fails to be a simplicial complex because it does not satisfy
criterion 3: The interior of the 1-simplex [v2,v3] is

∂ [v2,v3] = [v2,v3]\ v2∪ v3

Additionally, [v2,v3] ∩ [v4,v5] = v4. Since v4 is distinct
from the vertices v2,v3, we have v4 ∈ ∂ [v2,v3]. Therefore,
∂ [v2,v3]∩ [v4,v5] = v4. Therefore, the interior of [v2,v3] is
not disjoint from the simplex [v4,v5].

5.3 Homology
Let K be a simplicial complex. Define ∆n(K) to be the

free abelian group with basis the n-simplices σ1,σ2, . . . ,σm
in K. This means that ∆n(K) is a group with elements that
are formal sums of the form ∑

m
i=1 riσi for ri ∈ Z. The group

operation on ∆n(K) is defined so that the coefficients ri are
added component wise between two elements. For example,
let x = ∑

m
i=1 riσi,y = ∑

m
i=1 siσi be two elements of ∆n(K). Then, the abelian group operation is

defined to be:

x+ y =
m

∑
i=1

riσi +
m

∑
i=1

siσi =
m

∑
i=1

(ri + si)σi

The boundary ∂ of an n-simplex σ was previously defined to be the (n− 1)-simplices formed
by removing each vertex of σ . In terms of the free group ∆n(K), it turns out that it is better to
define the boundary by the alternating sum of its faces. Thus, let us define the boundary maps
∂n : ∆n(K)→ ∆n−1(K) for some fixed n in the following way on an n simplex σ = [v0,v1, . . . ,vn]:

∂n([v0,v1, . . . ,vn]) :=
n

∑
i=1

(−1)i[v0,v1, . . . , v̂i, . . . ,vn]

Then, we will extend ∂n by linearity to all elements of ∆n(K), such that:

∂n

( m

∑
i=1

riσi

)
=

m

∑
i=1

ri∂n(σi) ∈ ∆n−1(K)

This defines the boundary map on all elements of ∆n(K). Additionally, since ∂n is defined such
that ∂n(riσ1 +σ2) = ri∂ (σ1)+∂ (σ2), ∂n is a group homomorphism from ∆n(K) to ∆n−1(K).

Lemma: the composition ∂n−1 ◦∂n : ∆n(K)→ ∆n−2(K) is the zero map.
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Proof. In the case that n = 1 or n = 0, this is trivially true since ∆0 is the zero map by definition.
Thus, assume n≥ 2. Take any simplex σ = [v0,v1, . . . ,vn] ∈ ∆n(K). Then, we have:

∂n−1 ◦∂n([v0,v1, . . . ,vn]) = ∂n−1

( n

∑
i=1

(−1)i[v0,v1, . . . , v̂i, . . . ,vn]
)

Applying ∂n−1 will remove another vertex v j for each j 6= i. Let us break up the sum into cases:
for j < i and j > i. Then, we have:

= ∑
j<i

n

∑
i=1

(−1) j(−1)i[v0,v1, . . . , v̂ j, . . . , v̂i, . . . ,vn]+∑
j>i

n

∑
i=1

(−1) j+1(−1)i[v0,v1, . . . , v̂i, . . . , v̂ j, . . . ,vn]

Notice that the signs are flipped in these two sums. In particular, any simplex for some i < j in the
first sum is also in the second sum as j < i with the opposite sign, so the sum is equal to zero:

∂n−1 ◦∂n(σ) = 0 ∀σ ∈ ∆n(K)

Another way of stating this lemma is that Im∂n+1 ⊆ Ker∂n. A chain complex is a sequence of
abelian groups with homomorphisms between them such that the image of one homomorphism is
contained in the kernel of the next. Thus, since Im∂n+1 ⊆ Ker∂n, the abelian groups ∆n(K) with
the maps ∂n form a chain complex by definition:

· · · ∆n+1(K) ∆n(K) ∆n−1(K) · · · ∆0(K) 0
∂n+1 ∂n ∂0

Figure 5: A simplicial complex K with
β0(K) = 3, β1(K) = 1, and βn(K) = 0 for
n≥ 2

Given a chain complex, we can define
the nth homology group to be the quotient
group formed by Im∂n+1 and Ker∂n. This is
valid since a chain complex requires Im∂n+1 ⊆
Ker∂n. Let H∆

n be the nth homology group of
the chain complexes of ∆n(K):

H∆
n (K) =

Ker∂n

Im∂n+1

The rank of H∆
n (K) is called the nth Betti

number of K, and will be denoted as βn(K) =
|H∆

n (K)|. Intuitively, the Betti numbers of a
simplicial complex encode the number of n-
dimensional holes in the complex. For in-
stance, β0(K) is the number of connected com-
ponents of K, while β1(K) is the number of
one-dimensional holes. The elements of Ker∂n are called cycles, while the elements of Im∂n+1
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(a) RNA sequences as a point cloud. (b) Vietoris-Rips complex.

Figure 6: Illustration of Vietoris-Rips Complexes

are called boundaries. The reason why the simplicial complex in Figure 5 has non-trivial ho-
mology group H∆

1 (K) is because the cycle [v2,v4]+ [v4,v5]+ [v5,v6]+ [v6,v2] ∈ Ker∂1 cannot be
represented as a formal sum of the boundaries of 2-simplices in K. For this reason, the holes of
a simplicial complex are sometimes called irreducible cycles, since they are cycles that cannot be
reduced to the sum of boundaries.

5.4 Vietoris-Rips Complexes
Notice that a set of RNA sequences can be thought of as a set of points in a high-dimensional

metric space with distances between points defined by Hamming distance, as in Figure 6a. A
Vietoris-Rips complex is a method to construct a simplicial complex from a point cloud as follows
[11]:

1. Place a ball of radius R at each point in the point cloud for some R > 0, where R is the
filtration parameter.

2. For each pair of points whose R-balls are touching, add the 1-dimensional simplex (edge)
connecting them.

3. Add each higher dimensional simplex to the complex if each of its 1-dimensional edges are
included in the complex.

5.5 Persistent Homology
Persistent homology is a data analysis method from topological data analysis (TDA) which

constructs Vietoris-Rips complexes KR at varying values of R and then calculates the homology
groups H∆

n (K) for each complex [5].
As the filtration parameter increases, certain elements of H∆

n (KR) may persist for a wider range
of filtration parameters than others. These tend to be more significant as measures of the topology
of the dataset.
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The use of persistent homology for evolutionary modelling is based on the hypothesis that
elements of H∆

n (KR) correspond to recombination events. The intuition behind this hypothesis is
that applying point mutations will disperse an RNA sequence uniformly across Hamming space
and is therefore unlikely to form holes. On the other hand, recombination events can produce
large jumps in the point cloud of RNA sequences. This is more likely to produce persistent holes
in the Vietoris-Rips complexes. 1-dimensional holes are hypothesized to correspond with simple
recombination events between 2 or less RNA sequences, while higher dimensional holes have been
hypothesized to signify more complex recombination events between multiple RNA sequences [3].

8



(a) Vietoris-Rips complex with β1(K) = 0, i.e.
no 1-dimensional holes.

(b) Vietoris-Rips complex with β1(K) = 1, i.e.
a single 1-dimensional hole.

Figure 7: Illustration of Persistent Homology by Vietoris-Rips Complexes

6 Previous Work

7 Methodology

7.1 Project Goal

7.2 Variables of Interest
I studied the effectiveness of persistent homology to detect recombination with respect to the

following three variables of interest.

1. Measure of Homology:
The persistent homology algorithm returns a list of the irreducible cycles that are in the
Vietoris-Rips complexes with the filtration parameter where they first appeared and the fil-
tration parameter where the irreducible cycle was no longer present. The persistence of a
hole (irreducible cycle) is the difference in these filtration parameters. Therefore, there is no
single number that summarizes the results of persistent homology so it is not immediately
clear how to analyze numerically the results of persistent homology [3]. The term measure of
homology in this report refers to a number that can be attributed to a single run of persistent
homology to estimate the number of recombination events.

(a) Irreducible Cycle Rate: The total number of holes determined at all filtration pa-
rameter values. This does not take into account the persistence of the holes, only the
frequency. This measure of homology was introduced in the paper Topology of Viral
Evolution by Chan et al. [3]

(b) Maximum Persistence: The maximal persistence over all holes. This does not take
into account the number of irreducible cycles, only the most significant irreducible cy-
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cle. This measure of homology was introduced in the paper Topology of Viral Evolution
by Chan et al. [3]

(c) Sum of Persistence: The sum of the persistence of every hole in the Vietoris-Rips
complexes. A combination of the irreducible cycle rate and maximum persistence, in
that the sum of persistence takes into account the number and persistence of holes. This
measure of homology is novel, but inspired by the approach in [3].

2. Type of Recombination:
There are many types of recombination reactions that can occur within RNA viruses. Fully
understanding when and why recombination events occur is a complex topic not suitable for
the scope of this project. For simplicity, in this project I experimented with 4 basic types of
recombination [1]. I varied the following types of recombination, illustrated in Figure 8:

(a) Deletion: A segment containing more than one nucleotide in the RNA sequence is
deleted. In Figure 8, segment B is deleted.

(b) Insertion: A segment containing more than one nucleotide in the RNA sequence is
inserted. For the sake of the simulation, the inserted RNA subsequence is randomly
generated. This does not occur in nature, but randomly generated insertions are sub-
stantially simpler and behave similarly enough for the purpose of the simulations. In
Figure 8, segment B is inserted between segments A and B.

(c) Translocation: Two sequences split into two fragments and exchange their genetic
information by swapping fragments. For the simulation it was assumed that the pieces

Figure 8: Types of recombination studied.
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were approximately the same length. In Figure 8, the RNA sequences AB and CD
exchange segments D and B respectively.

(d) Inversion: A segment of RNA sequence is removed, reversed, and reinserted. In Figure
8, the orientation of the segment B is emphasized to show the inversion recombination.

3. Distance Metric:
Recall the definition of Hamming distance. One might notice that due to insertions and
deletions, different sequences may not have the same length. This would cause different
sequences to be points in metric spaces of different dimension. Points in separate spaces no
longer have a metric defined between them, which is necessary to construct a Vietoris-Rips
complex. Thus, it is necessary to resolve the issue of different length sequences to ensure
persistent homology is well defined on the given sequence space. In detecting recombination
with persistent homology, I tested 3 natural choices to define Hamming distance on different
length sequences. In the following examples, the symbol ‘−’ denotes a deleted nucleotide
in an RNA sequence.

(a) Projection Hamming Distance: Project both sequences to a lower dimensional space
so that the standard Hamming distance can be used:

d(AC−UGC,ACUUGC) = d(ACUGC,ACUGC) = 0

In particular, for any set of sequences S1,S2, . . . ,Sk, all of the positions where any Si
is non-zero are not considered by the metric so that Hamming can be applied naively
to the sequences with no deleted nucleotides. This is the default method to deal with
deletions in the MEGA-X software [?].

(b) Extended Hamming Distance: Treat each deleted nucleotide as a separate symbol,
effectively lifting the sequences to a higher dimensional space to apply standard Ham-
ming distance:

d(AC−UGC,ACUUGC) = 1

This is the default method used in the BioStrings package for R from Bioconductor
[13].

(c) Proposed Distance: Treat distance between a deleted nucleotide and a non-deleted
nucleotide as having distance .5 rather than 1:

d(AC−UGC,ACUUGC) = .5

This distance is a valid metric. This distance may be more effective because it repre-
sents that a deleted nucleotide is not necessarily as significant as a different nucleotide.
Intuitively, a sequence with some nucleotides deleted is not as different as a sequence
with completely different nucleotides.

7.3 Simulation Details
The simulation proceeds as follows:
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1. A random 1000 length RNA sequence is generated (the original “wild type”).

2. 100 copies of the random sequence are generated to produce the starting population of RNA
sequences.

3. The population of RNA sequences is simulated over 30 generations. Generations are simu-
lated according to the Wright-Fisher model, which selects child viruses uniformly at random
from the existing parent viruses from the previous generation [16]. Each child replicates the
previous parent virus and then undergoes pointwise mutations and recombination events.

4. Pointwise mutations are applied at some pointwise mutation rate. The pointwise mutation
rate is a number p with 0≤ p≤ 1 such that each nucleotide in the sequence is mutated with
probability p. The pointwise mutation rate is varied over multiple trials. This is to measure
whether persistent homology is detecting recombination events or pointwise mutations.

5. Recombination events are applied to the population of RNA sequences with respect to the
recombination rate. The recombination rate is a number r with 0 ≤ r ≤ 1 such that each
sequence in the population has a recombination applied with probability r. Recombination
events are applied at a random location in the sequence. Notice that 3 of the recombination
types studied (deletion, insertion, inversion) must choose some recombination length. The
algorithm chooses uniform randomly between 100 and 200 for this recombination length.

6. Pairwise distances for the population of sequences are calculated according to the distance
metric of choice, e.g. projection Hamming distance, extended Hamming distance, and the
proposed distance.

7. Persistent homology is computed using the ripsDiag function in the TDA package in R [7].
Only the 1-dimensional holes are computed - i.e., only the 1st homology group H∆

1 (K).
While further dimensional homology groups can detect recombination as well, the 1-dimensional
holes have been found to be the most consistent in prior work [3]. Additionally, computing
H∆

n (K) for n > 1 is significantly more computationally expensive.

8. The measure of homology with respect to the output of the ripsDiag function is returned.

Notice that there are many constants involved in the simulation procedure. These constants
were determined by testing different values to ensure persistent homology had sufficient detection
of recombination. An analysis of why each constant was chosen is provided below in the following:

1. SARS-CoV-2 viruses have roughly 30,000 nucleotides [17], so originally the sequences
were chosen to have 30,000 nucleotides. However, it was found to be too computationally
expensive to simulate sequences of roughly 2,000 Additionally, longer sequences were de-
sirable since they are less sensitive to deletion recombination events, which were one of the
recombination events modeled.

2. 100 copies of the original sequence was chosen due to computational constraints as well.
More copies of the virus was found to not be computationally viable. Additionally, roughly
100 sequences tended to be used for persistent homology due to similar computation re-
straints [5][3].
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3. Notice that increasing the number of generations by some factor p is generally equivalent
to increasing the recombination and pointwise mutation rates by p. This is because re-
combination and pointwise mutations are simulated to occur with some probability at each
generation, and so increasing the number of generations effectively increases the mutation
rate. Additionally, since new sequences are chosen uniformly at randomly from the previous
generation according to the Wright Fisher model, changing the number of generations does
not vary the distribution of sequences on average. Therefore, the number of generations was
chosen to be 30 somewhat arbitrarily while the mutation rates were kept variable.

4. The length of the recombination events was chosen to be between 100 and 200 by experi-
mentation. With too small of recombination lengths, there were no irreducible cycles found
whatsoever, and so the use of persistent homology would be trivial. The simulations sug-
gested that recombination length of around 100 led to the appearance of holes, so this range
was chosen to introduce some randomness.
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(a) Maximum persistence (b) Irreducible Cycle Rate

(c) Sum of Persistence

Figure 9: Simulations varying the measure of homology with insertion recombinations.

8 Results

8.1 Maximal Persistence is Optimal for Detecting Recombination
Figure 9 displays the measure of homology plotted on the y-axis from a simulation with re-

combination rate on the x-axis and the point-mutation rate on the z-axis. The goal of persistent
homology is to detect recombination. Therefore, the most effective measure of homology is that
which rises with recombination but not with the point mutation rates.

Thus, our simulations suggest that the irreducible cycle rate and sum of persistence measures
of homology are ineffective at detecting recombination since the y-axis rises with the point mu-
tation rate instead of the recombination rate. Therefore, the simulations suggest that maximum
persistence is the optimal measure of homology for insertion recombinations. In experiments with
other types of recombination, the results were consistent in suggesting that maximum persistence
is the best indicator of recombination. Notice in particular that the irreducible cycle rate rises with
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the point mutation rate especially when no recombination events are simulated. This is the part of
the graph of Figure 9 panel (b) where z = 0, i.e. the recombination rate is 0. Additionally, there ap-
pears to be some decrease in the number of irreducible cycles as the recombination rate increases,
which is the exact opposite of the desired behavior of persistent homology in this simulation. This
behavior is concerning, and is not consistent with the conclusions from the paper by Chan et al.
[3]

8.2 Maximum Persistence Best Detects Deletions and Inversions
Figure 10 displays the maximum persistence of simulations with the recombination type vary-

ing between deletions, insertions, inversions, and translocations. Notice that in Figure 10 panel (a)
and Figure 10 panel (c) the maximum persistence generally rises with the recombination rate - i.e.,
there is an upward trend along the z axis. However, the maximum persistence is not as strongly
correlated in Figure 10 panel (b) and Figure 10 panel (d). In particular, in panel (d), there is a large

(a) Deletions (b) Insertions

(c) Inversions (d) Translocations

Figure 10: Simulations varying the type of recombination with y axis as the maximum persis-
tence.
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spike near the x axis with large point mutation rate but small recombination rate. This suggests that
persistent homology applied to viruses with frequent translocations may estimate a large number
of recombination events where there are none.

Additionally, notice that while recombination events are reasonably well detected for deletions
and inversions, the results are quite “spiky”. This spikiness is especially notable in panel (c) and
panel (a). This spikiness suggests a significant variability in the detection of recombination. In
particular, depending on the randomness of the simulation, the recombination events may be well
detected or not detected at all by persistent homology. Therefore, this suggests that the detection of
inversions and deletions is quite inconsistent, despite the positive correlation with recombination
rate.

(a) Extended Hamming Distance (b) Projection Hamming Distance

(c) Proposed Distance

Figure 11: Simulations varying distance metrics with deletion recombinations.
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8.3 Extended Hamming Distance is Optimal for Detecting Deletions
In Figure 11, the simulation was run using different distance metrics. Additionally, the recom-

bination type is deletion since these distances only differ on sequences with deletions. First notice
that the projection Hamming distance is ineffective at detecting deletions. As more nucleotides
in the sequences are deleted the sequences are projected to lower dimensional spaces and there-
fore more information is lost in each projection. Therefore, this distance metric is quite poor for
deletions.

Both the proposed distance and the extended Hamming distance are reasonably effective at de-
tecting recombination. However, the extended Hamming distance has a stronger correlation with
the recombination rate and is therefore superior. The graph in Figure 11 panel (a) shows a signif-
icant positive trend along the z axis. However, in this experiment, since all of the recombination
events were deletions, it is natural that a metric which has a higher sensitivity to deletion will fare
better. To better compare the proposed distance and extended Hamming distance it would be use-
ful to run further tests on more realistic simulations which combine deletions with other types of
recombination.

9 Conclusion

9.1 Results Summary
RNA viruses cause a slew of deadly diseases, including HIV, the flu, and the recent SARS-

CoV-2 pandemic. Diseases caused by RNA viruses are difficult to treat for a number of reasons
- chief among them is their high mutation rate. RNA viruses can have anywhere from 100 to
10,000 times the mutation rates of DNA viruses [14]. HIV, in particular, is known for having an
extremely high mutation rate, which allows the virus to escape the immune system and develop
drug resistance more effectively [4].

The simulations ran suggested that persistent homology is most effective when used to analyze
the maximum persistence of the holes rather than the irreducible cycle rate or sum of persistence.
Therefore, a large number of irreducible cycles is less indicative of recombination than persistent
cycles.

Persistent homology is most effective at detecting insertions and inversions and lease effective
at detecting translocations and deletions, as supported by Figure 10. However, it is somewhat
inconsistent in its detection of recombination in general, due to the varying spikes in figures 9,
10, and 11. This could be amended by combining persistent homology with another method of
detecting recombination which could reduce the variance of the analysis.

The most effective distance metric on deletions is the extended Hamming distance, but further
testing on different recombination types is required to make a more general statement about the
efficacy of each distance metric.

One of the potential problems observed was that the recombination rate had to be quite high for
persistent homology to detect it. In nature, the recombination rate is usually not as high as in these
simulations, especially with respect to the point mutation rate [4]. Therefore, these simulations
provide evidence that persistent homology was not as effective as desired at detecting recombina-
tion in general. However, these simulations represent a greatly simplified version of viral evolution
and therefore may have excluded some key details which increase the effectiveness of persistent
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homology. In particular, these simulations did not take into account the behavior of a virus, only
the RNA sequence representing the genetic code of a virus. In nature, certain sequences are more
viable than others and spread faster or slower than others, instead of being selected uniformly at
random. These factors could drastically change the production of each generation and therefore
the resulting point cloud. One might expect the point cloud to be more clustered around certain
points where the viruses are most effective instead of dispersing randomly as point mutations are
applied. This could lead to a point cloud characterized by small clusters of sequences spread across
the sequence space.

9.2 Further Research
When using maximum persistence as a measure of homology the resulting graphs tend to be

quite spiky. Additional research could prove bounds on the variability of maximum persistence
with respect to simulations which would explain the spikiness of the graphs from a theoretical
perspective. One might approach this problem by using the uniform randomness of point mutations
to analyze the average topology of the space with only point mutations applied, and then consider
how the variability of the Betti numbers of the space might change as large recombinations are
applied to the sequences in the space.

Another useful way to extend the research in this project would be to drastically reduce the
number of sequences and recombinations and analyze the details of why persistent homology fails
or succeeds to detect recombination in specific cases. This research project employed a huge
amount of trials, with 36 runs of persistent homology used per graphic (Figures 9, 10, 11), with
30 generations of 100 sequences each. While this was useful to provide a birds eye view of the
effectiveness of persistent homology in detecting recombination, investigating the details of the
homology of specific data sets would help to better understand how recombination affects topology.

Vietoris-Rips complexes include any simplex with dimension > 1 whenever its 1-dimensional
edges are included in the complex. This is not the only way to decide whether higher dimensional
simplexes are included. For instance in Euclidean space, one could include a 2-dimensional sim-
plex if the R-balls placed around each of the triangle’s three vertices have non-empty intersection.
More generally, one could include an n-dimensional simplex of the R-balls around any n vertices
have non-trivial intersection. This construction is called a vCech Complex [11], and tends to repre-
sent the topology of point clouds in Euclidean space more faithfully than Vietoris-Rips complexes
at the cost of increased computation. However, since Hamming distance is a discrete space, there
is not an obvious way to construct a vCech complex for RNA sequences. Therefore, it would be
valuable to explore possible extensions of Hamming space to a non-discrete space to construct
vCech complexes for use in persistent homology.
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