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Abstract

In this report, we discuss the enumeration of plane partitions, a combinatorial object. We
discuss two methods that utilize the determinants of specific matrices to solve this enumeration
problem, and we investigate the algebraic structure of these matrices. Specifically, we interpret
these matrices as homomorphisms, and we are concerned about the structure of the cokernel
of the homorphisms. We present conjectures involving the cokernels, and we investigate a
specific case of cokernels in an attempt to prove one of the conjectures.

1 Introduction
In this report, we review literature regarding Kasteleyn cokernels. In the paper [5], Greg Ku-

perberg describes Kasteleyn cokernels and presents conjectures regarding these structures. In order
to create these cokernels, we first describe a combinatorial object known as a plane partitions in
Section 1. We discuss how a plane partition can be depicted as a lozenge tiling and as a per-
fect matching. In Section 3 and Section 4, we present two different methods involving matrices
that can be used to count the number of plane partitions. We will show how these methods are
similar, and we will see that the Kasteleyn-Percus matrices and the Gessel-Viennot matrices are
stably equivalent. In Section 5 and Section 6, we construct Carlitz and Jacobi-Trudi matrices us-
ing the Gessel-Viennot method. We see that Jacobi-Trudi matrices are a generalization of Carlitz
matrices. We can use Carlitz matrices to discuss Kasteleyn cokernels and investigate what is con-
jectured about them in Section 7. In order to evaluate these matrices further it is useful to introduce
q-analogues. We present these in Section 8. We conclude this report by investigating the Smith
normal forms of the q-analogues of Carlitz matrices, and by specializing to a× b× 2 q-Carlitz
matrices in order to explore one of the conjectures.

2 Plane Partitions
The heart of this project is grounded in plane partitions. We are interested in investigating

plane partitions as they have properties that make them nice to count. These objects are presented
by Percy MacMahon in [6]. He concentrates on them in Volume 2 in Section 9 and Section 10. In
this book, MacMahon provides a nice formula which demonstrates that the enumeration of plane
partitions is round. MacMahon investigates both plane partitions and their q-analogue. Richard
Stanley describes q-analogues in Chapter 1 of [9]. A q-analogue of a mathematical object is an
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object that is in terms of a variable q that becomes the original object when q = 1. For example,
the q-analogue of an integer n is

(n)q = 1+q+q2 + · · ·+qn−1 = (1−qn)/(1−q)

Similarly, the q-analogue of n! is

(n)q! = (n)q(n−1)q · · ·(1)q

and the q-analogue of
(n

k

)
is (

n
k

)
q
= (n)q!/((k)q!(n− k)q!)

When working with q-analogues, the q-analogue of a binomial coefficient is referred to as a Gaus-
sian binomial coefficient. When working with q-analogues, a polynomial is q-round if it is a
ratio of products of q-integers. It is the case that Gaussian binomial coefficients are both q-round
and square free. We will see that the enumeration of plane partitions is round and that the q-
enumeration of plane partitions is q-round.

A plane partition is an arrangement of unit cubes in an a×b×c dimensional rectangular prism
which is stable under a gravitational force towards the origin. In other words behind or to the
left of every cube is either a cube or another wall. We are concerned in counting the number of
plane partition in an a×b× c dimensional rectangular prism. There is a natural bijection between
plane partitions in an a× b× c dimensional rectangular prism and lozenge tilings of a hexagon
with side lengths a,b,c,a,b,c covered by equilateral unit triangles. We will refer to such a region
as an a× b× c semi-regular hexagon. A lozenge tile is a quadrilateral constructed by attaching
two unit equilateral triangles. The bijection arises since a 2-dimensional representation of a plane
partition is in fact such a tiling. This bijection transforms the problem of determining the number of
a×b×c plane partitions into a problem of determining the number of lozenge tilings of an a×b×c
semi-regular hexagon. In Figure 1 and Figure 2 we display two representations of the same plane
partition. The lozenge tiles in Figure 3 are color-coded so that the bijection is more apparent.
Typically, the lozenges are all the same color. For the purpose of this paper, we will concentrate on
generic plane partitions; however, the enumeration of symmetry classes of plane partitions is also
investigated. Stanley explores the symmetry classes in [8]. In this paper he presents 10 symmetry
classes that can be constructed through rotation, reflection, and self-complementation. Kuperberg
uses determinants and Pfaffians of matrices to express the enumeration of the ten symmetry classes
of plane partitions in [3]. Notably he found the formula for the enumeration of the last symmetry
class. Even the symmetry classes have round answers which contributes to why plane partitions
may be interesting to examine.

In order to determine the number of tilings of the semi-regular hexagonal region, it is useful
to utilize another bijection. We can denote the a×b× c semi-regular hexagon with a graph where
there is a vertex for every equilateral triangle in the region and there is an edge between two
vertices if and only if the corresponding equilateral triangles are adjacent in the region. This graph
is bipartite. We color a vertex white if it corresponds to an upwards-oriented triangle and we color
a vertex black if it corresponds to a downwards-oriented triangle. In the region no two triangles
with the same orientation are adjacent, so no two vertices of the same color share an edge, and
the graph is bipartite. The graph is planar since we can display it in Figure 2 with no intercepting
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Figure 1: Example of 3×3×3 plane partition

Figure 2: Lozenge tiling of a 3×3×3 semi-regular hexagon corresponding to the plane partition
in Figure 1

edges. Notice that every lozenge tile consists of two equilateral triangles: one oriented upwards
and one oriented downwards. Therefore, a lozenge tile corresponds to a pairing of a black vertex
with a white vertex. This means that a lozenge tiling of the semi-regular hexagon is in bijection
with a perfect matching of the corresponding bipartite graph. A perfect matching is a set of edges
of a graph where no edges share a vertex and every vertex is covered in the matching. In Figure
3, we display the plane partition from Figure 1 in this manner. The colored edges represent a
matching, and they are color-coded so that the color correspond with the color of the lozenge tiles
from Figure 2. We can now determine the number of a×b× c plane partitions by determining the
number of perfect matchings of a bipartite, planar graph.

3 Kasteleyn-Percus Method
In order to determine the number of perfect matchings of a bipartite planar graph, G, we will

need to consider the graph’s alternating adjacency matrix denoted by A. To construct this matrix,
we label each of the vertices in G. For convenience, since G is bipartite, we can 2-color G such
that no two vertices of the same color share an edge. Say that under the 2-coloring there are m
vertices of color 0 and n vertices of color 1. We label the vertices of color 0 with the integers
{1,2, . . . ,m}, and we label the vertices of color 1 with the integers {m+1,m+2, . . . ,m+n}. We
let Ai, j be the number of edges from vertex i to vertex j minus the number of edges from vertex j
to vertex i. It follows that A is an (m+n)× (m+n) matrix. Since G is bipartite, if both i and j are
in {1,2, . . . ,m} or both i and j are in {m+1,m+2, . . . ,m+n} then Ai, j = 0. Thus the adjacency
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Figure 3: Perfect matching of the bipartite, planar graph corresponding to a 3×3×3 plane partition

matrix is of the form,

A =

(
0

∣∣ M
−M

∣∣ 0

)
where M is the bipartite adjacency matrix of G. We will concentrate on M which is m×n dimen-
sional. If m = n, then the number of vertices of color 0 is the same as the number of vertices of
color 1. In this case, M is a square matrix, and it is possible that G has a perfect matching.

Recall that the determinant of an n×n matrix M = (mi, j) is

detM = ∑
σ

sgn(σ)
n

∏
i=1

mi,σ(i)

where σ is a permutation of n objects. We also consider the permanent of an n×n matrix which is

perm M = ∑
σ

n

∏
i=1

mi,σ(i)

Note that if the entries of M are only zeros and ones then the permanent of M is the number of
permutations,σ , of n objects such that mi,σ(i) = 1 for all 1 ≤ i ≤ n. If M is a bipartite adjacency
matrix, then such a permutation is a perfect matching. The permanent of a bipartite adjacency ma-
trix is the number of perfect matchings in the corresponding graph. Since we know more about the
determinant of a matrix than the permanent, if we can find a connection between the determinant
and the permanent, we can efficiently calculate the number of a×b× c plane partitions.

Theorem 3.1 (Kasteleyn-Percus Method). Let G be a simple, planar, bipartite graph and let M
be the bipartite adjacency matrix of G. The graph G admits a sign decoration, M′ such that all
terms in detM’ have the same sign, where M′ is the bipartite adjacency matrix of G with the sign
decoration.

The Kasteleyn-Percus method was created by mathematicians Pieter Kasteleyn and Jerome
Percus. They discuss this process in [2] and in [7], respectively. Theorem 3.1 appears in [5]. This
is also referred to as the permanent-determinant method. Note that if all terms in detM′ are the
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same sign, then |detM′| = perm M as desired. The sign decoration of G gives a face of G an odd
number of negative signs if and only if the face has 4k sides for some integer k. The graph G is
said to be Kasteleyn-flat when placed under such a sign orientation and the corresponding bipartite
adjacency matrix M′ is called a Kasteleyn-Percus matrix. A similar technique can be applied to
general planar graphs and is known as the Hafnian-Pfaffian method. This method uses the Pfaffian
of a matrix to express the number of perfect matching, and orients the graph such that the the
Hafnian of the oriented graph is the same as the Pfaffian of the original graph. This method is used
in [3]. For the scope of this report, we will be concentrating on bipartite, planar graphs and the
Kasteleyn-Percus method.

By using the Kasteleyn-Percus method and the bijections in Section 2, we can construct the
clean formula for the number of a×b× c plane partitions that MacMahon found, PP(a,b,c).

PP(a,b,c) =
H(a+b+ c)H(a)H(b)H(c)
H(a+b)H(a+ c)H(b+ c)

Where H(n) = (n−1)!(n−2)! . . .(1)! is the hyper factorial. This formula is noteworthy since it is
round or the product of small factors. This property inspires further research into plane partitions
as it demonstrates that something interesting arises in the background of the problem.

4 Gessel-Viennot Method
It is common to use determinants of specific matrices to count combinatorial objects. The

Gessel-Viennot method works similarly. This is presented in [1]. Let G be a directed, plane graph
with n sources and n sinks. Let the edges at each vertex be segregated so that there are no four
edges alternating in, out, in, out. The Gessel-Viennot method constructs an n×n matrix, M, such
that detM is the number of disjoint, directed paths in G from the sources to the sinks. In the Gessel-
Viennot matrix, GV (G), the entry GV (G)i, j is the number of directed paths from the source i to
the sink j.

There is a connection between the Gessel-Viennot method and the Kasteleyn-Percus method.
This is a result of Kuperberg in [4]. Suppose that G is a graph on which we can apply the Gessel-
Viennot method. We want to produce a modified graph G′ that we can apply the Kasteleyn-Percus
method to. Let G have a transit vertex p. In G′ we split the transit vertex into two vertices q and
r where q is a sinky and r is source and there is an edge directed from r to q. Figure 4 shows a
vertex being split.

Figure 4: Depiction of vertex splitting

It follows that G′ is planar since G is planar, and G′ is bipartite since all of the vertices are sinks
or sources. There cannot be an edge from one source to another source or one sink to another sink,
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so if we color all of the sources color 0 and all of the sinks color 1, it is clear that G′ is bipartite.
For the purpose of applying the Kasteleyn-Percus method, G′ need not be directed.

There is a bijection between the number of disjoint, directed paths in G from the sources to the
sinks and the number of perfect matchings in G′. Take a set of of disjoint, directed paths in G and
transform G into G′ by splitting the transit vertices. If there is an edge between two vertices in G in
the set of paths then let the two vertices be matched in G′. If a vertex in G is not contained in any of
the edges in the set of paths, then the vertex must be a transit vertex. Thus, in G′ the vertex is split
into two separate vertices that are connected. Let these two new vertices be matched in G′. This
does result in a perfect matching in G′. Therefore, the Gessel-Viennot matrix of G, GV (G), and
the Kasteleyn-Percus matrix of G′, KP(G′), have determinants which enumerate the same thing.

It is actually the case that GV (G) and KP(G′) share several properties as they are stably equiv-
alent. Let R be a commutative ring with unity, and let M be a matrix over R. There are three
types of equivalences that we consider: general row operations, general column operations, and
stabilization. These are respectively:

M 7→ AM,M 7→ MA,M 7→
(

1
∣∣ 0

0
∣∣ M

)
where A is invertible. Any matrix M′ which can be transformed to M under these operation is a
stably equivalent form of M We define a pivot operation on square matrices M to be:(

M
∣∣ v

w
∣∣ 1

)
7→ M− (v⊗w)

This operation does not change the determinant of the matrix, and matrices are stably equivalent
under the pivot operation. It can be shown that GV (G) can be obtained by applying pivot operations
to KP(G′). Thus, GV (G) is a stably equivalent from of KP(G′). It can be more convenient to work
with GV (G) than with KP(G′).

5 Carlitz Matrices
We want to investigate the structure behind the Kasteleyn-Percus matrices used to enumerate

a× b× c plane partitions. As shown in Section 3, this can be performed by examining the struc-
ture of Gessel-Viennot matrices. We define Carlitz matrices to be the Gessel-Vienot matrices that
describe a×b× c plane partitions denoted as C(a,b,c). These matrices are mentioned by Kuper-
berg in [4]. In order determine the entries of Carlitz matrices we transform the bipartite, planar
graph whose number of perfect matchings is the number of a× b× c plane partions into a graph
on which we can apply the Gessel-Viennot method. This is done by performing the opposite of a
vertex splitting. We contract the edges in the graph which are parallel, and we direct the edges such
that vertical edges run from south to north and horizontal edges run from west to east. By our cho-
sen convention we contract the edges so that there are c sources and c sinks. This transformation
is depicted in Figure 5.

The Gessel-Viennot matrix of this graph will be c×c dimensional. We need only determine the
number of northeastern lattice paths from source i to sink j. This is

( a+b
b+i− j

)
. Therefore, the Carlitz

matrix, C(a,b,c), has entries Ci, j =
( a+b

b+i− j

)
. Although, we choose to contract so that the matrix is
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Figure 5: Correspondence between the bipartite, planar graph for a×b× c plane partition and the
graph modified for Gessel-Viennot method

c× c dimensional, we can contract in any of the three dimensions, and all three resulting matrices
are stably equivalent. From now on we will arrange a,b,c such that a ≥ b ≥ c. This allows us
to focus on the matrix that is stably equivalent to the Kasteleyn-Percus matrix used to enumerate
a×b× c plane partitions which has the least dimension.

6 Jacobi-Trudi Matrices
In [5], Kuperberg introduces Jacobi-Trudi matrices in the context of Kastelyn cokernels. While

we have focused on lozenge tilings in a semi-regular hexagon, we can also consider other regions.
For example, we can consider lozenge tilings over a trapezoidal region. Consider a trapezoid with
height a and bases with length c and a+c that is covered by unit equilateral triangles. The number
of tilings over this region is zero as there are a more upwards-oriented triangles than downwards-
oriented triangles. We can correct for this by appending a upwards-oriented triangles on top of
the larger base of the trapezoidal region. We call the appended triangles teeth, and we use the
set T = {t1, t2, . . . , ta} to denote the location of the teeth. For convention we index the location of
teeth starting at 0. T ⊂ {0,1, ...,a+c−1} and |T |= a. These regions are referred to as trapezoids
with teeth. Note that instead of appending a upwards-oriented triangles, it is also valid to remove a
downwards-oriented triangles on the largest row. This also results in a region with an equinumerous
number of triangles with both orientations. We refer to the missing triangles as gaps, and call this
region trapezoids with gaps. If a trapezoid with teeth and a trapezoid with gaps have their teeth
or gaps at corresponding locations, they have the same number of tilings. This is true since in
a tiling of a trapezoid with teeth, all teeth must be covered by a lozenge tile that also covers an
adjacent downwards-oriented triangle. Thus, for any perfect tiling of a trapezoid with gaps, we can
attach lozenge tile to the gaps to have a tiling of a trapezoid with teeth, and for any perfect tiling
of a trapezoid with teeth, we can remove the tiles that cover the teeth in order to have a tiling of a
trapezoid with gaps. The tilings are in bijection so they number of tilings of both regions is indeed
the same. Depending on the case, it can be helpful to think about both regions. These are depicted
in Figure 6.
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Figure 6: Trapezoid with Teeth and Trapeozoid with gaps where a = 4,c = 3, and T = {0,2,3,6}

We want to construct a matrix whose determinant is the number of tilings of an a×c trapezoid
with teeth located at t1, t2, . . . , ta. Similarly to the semi-regular hexagon case, we will use the
Gessel-Viennot method to construct these matrices. The trapezoidal region is not as symmetric as
the semi-regular hexagons, so the direction of edge we choose to contract matters. If we contract
on the backwards-slanted edges in the bipartite, planar graph coresponding to trapezoids with
teeth, then the Gessel-Viennot matrix produced is referred to as a Jacobi-Trudi matrix. When we
perform the contraction we also reflect over the horizotal axis. Thus, the sources are the teeth.
This is shown in Figure 7. If we contract on the vertical edges in the bipartite, planar graph
corresponding to trapezoids with gaps, then the Gessel-Viennot matrix produced is referred to as
a dual Jacobi-Trudi matrix. In this graph the sinks correspond to the triangles on the top row
where there are not gaps. This is depicted in Figure 8. Note that in Figure 8 we depict dashed
edges and vertices to represent what was removed by the gaps. With these matrices we determined
equations for Jacobi-Trudi matrices, JT (a,c,T ), and for dual Jacobi-Trudi matrices, dJT (a,c,T ).
The Jacobi-Trudi matrices are a× a dimension and have entries JTi, j =

(a+c−1−ti
c−ti+ j−1

)
. Let S = T c

have elements s1,s2, . . . ,sc. The dual Jacobi-Trudi matrices are c× c dimensional and have entries
dJTi, j =

( a
a+i−1−s j

)
The Jacobi-Trudi matrices are actually a generalization of Carlitz matrices. If the trapezoid

with teeth has base lengths a+b+c and c and the set of teeth are {0,1, . . . ,a−1,a+b+1,a+b+
2, . . . ,a+b+ c}, then the Jacobi-Trudi matrices corresponding to this region are stably equivalent
to the Carlitz matrix C(a,b,c).

7 Kasteleyn Cokernels
We have now described how to construct Carlitz, Jacobi-Trudi, and dual Jacobi-Trudi matrices.

We were motivated to construct these matrices in order to enumerate plane partitions or lozenge
tilings, and we have found that this enumeration results in round answer. This inspired us to
investigate what may be occurring in the background to result in such a “nice” answer. A square
matrix with dimensions n×n over a ring R can also be interpreted as a homomorphism from Rn to
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Figure 7: Correspondence between the bipartite, planar graph for trapezoids with teeth and the
graph modified for Gessel-Viennot method

Figure 8: Correspondence between the bipartite, planar graph for trapezoids with gaps and the
graph modified for Gessel-Viennot method
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itself. This interpretation has a cokernel

coker M = Rn/imM

The cokernel is also the free R-module with n generators whose relations are given by M. If M is
the stably equivalent form of M′ then the cokernels of M and M′ are the same. The number of ele-
ments in the cokernel is the determinant of M up to unit factors. We are interested in investigating
the structure of the cokernels of Kasteleyn-Percus matrices used to enumerate plane partitions. We
refer to these cokernels as Kasteleyn cokernels, and they are the subject of [5].

If R is a PID, then the cokernel of M can be described by the Smith normal form of M, Sm(M).

Theorem 7.1. If M is a k×n matrix over some PID R, then there exists invertible matrices A and
B such that

Sm(M) = AMB

is diagonal and Sm(M)i,i divides Sm(M)i+1,i+1

As the Carlitz matrices are integer matrices, they all admit Smith normal forms, and we can
quickly examine the cokernel of the Carlitz matrices. Results involving Kasteleyn cokernels are
found in [4]. It follows by the Gessel-Viennot method that if one of a,b,c is 1, then the cokernel
of C(a,b,c) is cyclic. Kasteleyn cokernels need not be cyclic. For example, coker C(2,2,2) ∼=
Z/2×Z/10. We used computer coding to investigate the structure of Kasteleyn cokernels. After
determining the Smith normal form of C(a,b,c) where 2 ≤ a ≤ 15, 2 ≤ b ≤ 50, 2 ≤ c ≤ 50 we
found that C(4,2,2),C(2,4,2),C(2,2,4) were the only Carlitz matrices with a cyclic cokernel. We
conjecture that these are the only 3 Carlitz matrices such that min(a,b,c)> 1 with cyclic cokernels.

We are interested in the number of non unit entries in the Smith normal form of a Carlitz
matrix. This number corresponds to the rank of the cokernel of C(a,b,c). By the Gessel-Viennot
method, we know that the rank of the cokernel of C(a,b,c)≤ min(a,b,c). We ran computer code
to determine the rank of C(a,b,c). We let 2 ≤ a ≤ 50, 2 ≤ b ≤ 20, and 2 ≤ 20. We found that
for the majority of these matrices the cokernel of C(a,b,c) is indeed min(a,b,c). Moreover, the
difference between the rank of C(a,b,c) and min(a,b,c) was at most 3. When investigating Carlitz
matrices of the from C(a,a,a) with 1 ≤ a ≤ 40, we noticed that the rank of C(a,a,a) is a when a
is a power of 2. We conjecture that C(a,a,a) = a if and only if a is a power of 2.

8 q-analogue of Plane Partitions
While investigating the structure of the Kasteleyn cokernels we desired to understand what

else may be occurring that we do not notice when working over the integers. In order to further
investigate these cokernels, we want to investigate the q-analogues of Carlitz matrices. We con-
struct a q-analogue for plane partitions by assigning a plane partition the weight of qn if the plane
partition has exactly n unit cubes. We assign weights to the edges in the bipartite planar graph
that describes a× b× c plane partitions, so that the product of the weights of a perfect matching
is qn if and only if the corresponding plane partition has n unit cubes. This weighting is done
by giving all of the vertical and backwards-slanted edges a weight of 1, and by giving the bottom
rightmost forwards-slanted edges a weight of 1. The weights of the other forwards-slanted edges is
q times the weight of the forwards-slanted edges to the lower-right of it. We use the Gessel-Viennot
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Figure 9: Example of the q-weighting on the bipartite, planar graph for 3×3×3 plane partitions

method to construct the q-analogue of the Carlitz matrices, and we account for extra factors of q
under the weighting. The entries of the q-Carlitz matrices, denoted by C(a,b,c;q) must include
extra factors of q. We are going to work in a ring where q is a unit, so for convenience we multiply
all entries by a power of q. We have that

C(a,b,c;q)i, j = q(c−1−i) j
(

a
b+ i− j

)
q

Note that C(a,b,c;1) = C(a,b,c) as desired. It should also be noted that MacMahon also con-
sidered q-enumeration while working with plane partitions in [6]. He found the formula for
the q-enumeration without utilizing neither the Kasteleyn-Percus method nor the Gessel-Viennot
method.

We can apply a similar weighting to the graphs of trapezoids with teeth in order to construct
the q-analogue for Jacobi-Trudi and dual Jacobi-Trudi matrices. The desired weighting has the
same construction. We can then determine q-analogue of the Jacobi-Trudi matrices, denoted as
JT (a,c,T ;q), and the q-analogue of the dual Jacobi-Trudi matrices, denoted as dJT (a,c,T ;q).
These were determined by the author. As in the case of the q-Carlitz matrices, the main difference
is the factor of q each entry is multiplied by. The entries of the q-Jacobi-Trudi matrices are

JTi, j = q1(ti, j)
(

a+ c−1− ti
c− i1 + j−1

)
q

where

q1(ti, j) =
{ ( j−1)(c− ti)+∑

j−2
k=1 k ti ≤ c−1

∑
c+ j−ti−2
k=1 k ti > c−1

The entries of the q-dual Jacobi-Trudi matrices are

dJTi, j = q2(i,s j)

(
a

a+ i−1− s j

)
q
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where

q2(i,s j) =
{

∑
c−i
k=1 k(s j − c)(c− i)+ s j ≥ c

∑
s j−i
k=1 k s j < c

9 Smith Normal Forms of q-Carlitz matrices
We will now investigate the cokernels of q-Carlitz matrices over the ring Z[q,q−1]. It is con-

jectured in [5] that these matrices not only admit a Smith normal form over Z[q,q−1] with q-round
answers but also that the entries are square-free. This ring is a UFD, but it is not a PID. Matrices
with entries over a UFD need not admit a Smith normal form, and most matrices over Z[q,q−1] do
not have a Smith normal form. Since Q[q] is a PID, we can determine the Smith normal form of
C(a,b,c;q) over Q[q] to determine the Smith normal form of C(a,b,c;q) over Z[q,q−1] if it exists.

We further conjecture that if a C(a,b,c;q) matrix admits a Smith normal form then the number
of nonzero non unit entries of the Smith normal form of C(a,b,c;q) is min(a,b,c). This conjecture
would explain why the rank of cokernel of Carlitz matrix, C(a,b,c) is often min(a,b,c). For
example, the Smith normal form of C(3,3,3) has diagonal entries 1,7, and 140. This has one unit
entry, but the Smith normal form of C(3,3,3;q) has diagonal entries:

q2 −q+1,(q2 −q+1)(q6 +q5 +q4 +q3 +q2 +q+1),

and

q(q+1)(q2 −q+1)(q4 +1)(q4 +q3 +q2 +q+1)(q6 +q5 +q4 +q3 +q2 +q+1)

The q-Carlitz matrix does not have any non unit entries on the diagonal. This conjecture also
supports that the cokernels of C(a,b,c) are not cyclic if min(a,b,c) > 1 with the exception of
(2,2,4),(2,4,2) and (4,2,2). The cokernel of C(a,b,c) is not cyclic if two of the entries in the
diagonal of the Smith normal form of C(a,b,c) have a non unit greatest common divisor. If the
conjecture holds and min(a,b,c) > 1, then the Smith normal form of C(a,b,c;q) has 2 non unit
entries on the diagonal. By the construction of a Smith normal form, one of these entries divides
the other, so these entries have a non unit greatest common divisor.

10 Cokernels of C(a,b,2;q) over Z[q,q−1]

We would like to make progress on the conjecture that C(a,b,c;q) does in fact admit a Smith
normal form over Z[q,q−1]. If any of a,b,c is 1 then by the Gessel-Viennot method, C(a,b,c;q)
trivially has a Smith normal form. We now suppose that a,b,c ≥ 2, and we specialize to the case
where c = 2. In this case C(a,b,2;q) is[ (a+b

b

)
q

(a+b
b+1

)
q

q
(a+b

b−1

)
q

(a+b
b

)
q

]
which is stably equivalent to

C′(a,b,2;q) =

[(a+b
b

)
q q

(a+b
b+1

)
q(a+b

b−1

)
q

(a+b
b

)
q

]
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We could quickly convert this matrix into its Smith normal form if there is one entry the divides
the other three entries. The likely candidate for such an entry is

( a
b−1

)
q. We want to investigate

when
(n

k

)
q divides

( n
k+1

)
q and

( n
k=2

)
q. We can expand these Gaussian binomial coefficients to get

that (
n

k+1

)
q
=

(
n
k

)
q

(n− k)q

(k+1)q(
n

k+2

)
q
=

(
n
k

)
q

(n− k)q(n− (k+1))q

(k+2)q(k+1)q

By the first equation we see that:

(1) if (k+1)q divides (n− k)q, then
(n

k

)
q divides

( n
k+1

)
q.

By the second equation equation we get that:

(2) if (k+2)q(k+1)q divides (n− k)q(n− (k+1))q, then
(n

k

)
q divides

( n
k+2

)
q.

It is known that (d)q divides (n)q if and only if d|n, so (1) is satisfied if n ≡ k mod k+1. We have
that (2) is satisfied if:

a. if n ≡ k mod (k+1)(k+2),

b. if n ≡ k+1 mod (k+1)(k+2),

c. if n ≡ k mod (k+1) and n ≡ k+1 mod (k+1) which by the Chinese remainder theorem
is satisfied when n ≡−1 mod (k+1)(k+2),

d. if n ≡ k+1 mod (k+1) and n ≡ k+2 mod (k+1) which by the Chinese remainder theo-
rem is satisfied when n ≡ 2k+2 mod (k+1)(k+2).

In order to satisfy both (1) and (2) we can have that n ≡ k mod (k + 1)(k + 2) or that n ≡ −1
mod (k+1)(k+2).

Suppose that n ≡ k or −1 mod (k+1)(k+2). Take b−1 = k and a+b = n, In other words
b = k + 1 and a ≡ −1 or − k − 2 mod (k + 1)(k + 2). Then for such an a and b, C′(a,b,2)2,1
divides all entries of C′(a,b,2;q), and these C(a,b,c;q) admit a Smith normal form over Z[q,q−1].

These are not the only cases where q-Carlitz matrices admit a Smith normal form over this
ring. Consider C(2,2,2;q). We can convert this matrix into its Smith normal form using invertible
row and column operations.

C′(2,2,2;q) =
[

q4 +q3 +2q2 +q+1 q4 +q3 +q2 +q
q3 +q2 +q+1 q4 +q3 +2q2 +q+1

]

7→
[

q2 +1 −q5 −q3

q3 +q2 +q+1 q4 +q3 +2q2 +q+1

]
7→

[
q2 +1 0

q3 +q2 +q+1 −q6 −q5 +2q2 +q+1

]
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7→
[

q2 +1 0
0 (q2 +1)(q4 +q3 +q2 +q+1)

]
Notice that during this transformation, we produce the entry q2 +1 which is the greatest com-

mon divisor of q4 + q3 + 2q2 + q+ 1 and q3 + q2 + q+ 1. The author believes that this may be
importing in proving the conjecture. We conjecture that the equation(

n
k

)
q
x+

(
n

k+1

)
q
y = gcd(

(
n
k

)
q
,

(
n

k+1

)
q
)

has solutions in Z[q,q−1]. This equation is the Bézout equation and always has solutions in a PID.
This equation is used when converting a matrix into its Smith normal form over a PID, and if this
conjecture is true, it could allow us to construct an algorithm to convert q-Carlitz matrices into
their Smith normal form. We have found that

gcd(
(

n
k

)
q
,

(
n

k+1

)
q
) =

(gcd(n+1,k+1))q

(k+1)q

(
n
k

)
q

This can be used to generate solution to the equation for specific cases. For example, if (k+1)|n
and gcd(k+1,n+1) = 1, then (

−q(n−k−1)q
(k+1)q

,1) solves the equation for k < n/2 and (1, −q(n−k−1)q
(k+1)q

)

solves the equation for k > n/2.

11 Concluding Remarks
There is still a lot of progress to be made in proving these conjectures. We have proven that

infinitely many q-Carlitz matrices admit a Smith normal form over Z[q,q−1], and we are hopeful
that an algorithm can be created to convert C(a,b,2;q) into its Smith normal form. We are also
interested in investigating these conjectures in connection with Jacobi-Trudi matrices. We have
constructed q-specializations of a Jacobi-Trudi matrix, and it is conjectured that these matrices
admit a Smith normal form as well. We wish to look into the rank of these matrices.
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