
Quantum Information Metric Spaces Quantum Error Detection

Quantum Error Detection in a General Metric Space
Setting

Bella Finkel

UC Davis Mathematics REU

August 2022

1/16



Quantum Information Metric Spaces Quantum Error Detection

Contents

1 Quantum Information

2 Metric Spaces

3 Quantum Error Detection

2/16



Quantum Information Metric Spaces Quantum Error Detection

Where We Live
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The state of a single qubit can be written as

|ψqubit⟩ = a |0⟩+ b |1⟩ =
[
a
b

]
.

Its state space is

|ψqubit⟩ ∈ H2
∼= C2.

For a pure state, the state space of a qubit
can be represented by a Bloch sphere.

More generally, define a qudit

|ψ⟩ = a0 |0⟩+ a1 |1⟩+ · · ·+ ad−1 |d − 1⟩

|ψ⟩ ∈ Hd
∼= Cd .
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Global Phase
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Let
Pm = P∗

m = PmPm

be an orthogonal projection corresponding
to a measurement outcome m. The
probability pm that outcome m occurs in
the state |ψ⟩ is

p(m) = ⟨ψ|Pm |ψ⟩
= ⟨ψ| e−iθPme

iθ |ψ⟩

|ψ⟩ = e iθ
∣∣ψ′〉 =⇒ |ψ⟩ ∼

∣∣ψ′〉
For this reason, we say that global phase
has no impact on measurement outcomes.
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Quantum Codes

Definition

A quantum code C is a subspace of a system’s state space

|ψcode⟩ ∈ C ⊆ Hd .

It can be described through a d × d projection matrix

PC = P∗
C , PCPC = PC

PC ∈ Md(C) ∼= L(Hd).

We can regard PC as a boolean asking if a state |ψ⟩ is in the code.
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Metric Space

A metric space is a set X possessing a distance function d : X ×X → R (in
fact, by the following axioms, d : X × X → R≥0) s.t.

1 d(x , y) = 0 ⇐⇒ x = y

2 d(x , y) = d(y , x)

3 d(x , z) ≤ d(x , y) + d(y , z).

Hamming Metric

Let X = {0, 1}n be the set of length n bit strings. Define the distance
between bit strings x , y ∈ X as the number of bit values that differ between
x and y .
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Quantum Metric

A quantum metric on Md(C) ∼= L(Hd) is a nested chain of subspaces

I ∈ V0 ⊆ V1 ⊆ · · · ⊆ Md(C)

invariant under taking Hermitian adjoints and possessing the properties that

1 V0 = span{I}
2 Vt = V∗t
3 VsVt ⊆ Vs+t

These properties are analogous to those in a classical metric space as

1 V0 = span{I} ←→ d(x , y) = 0 ⇐⇒ x = y

2 Vt = V∗t ←→ d(x , y) = d(y , x)

3 VsVt ⊆ Vs+t ←→ d(x , z) ≤ d(x , y) + d(y , z)
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Quantum Metric

Each Vt is defined to be the linear span of operators acting on Hd which
affect at most t qubits. For example, an error E ∈ V1 affects one or fewer
qubits, but the particular qubit which it affects is all of the qubits in the
codeword in quantum superposition.

Quantum Hamming Metric

Up to orthonormal change of basis, a chain of subspaces with bases
consisting of the matrices

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, I =

[
1 0
0 1

]
characterize the quantum Hamming metric on a single qubit M2(C).
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Quantum Errors

Definition

An error space Vt is a self-adjoint subspace of the d × d matrices with
entries in C

I ∈ Vt = V∗t ⊆ Md(C) ∼= L(Hd).

Vt consists of errors E acting on states |ψ⟩ in C.

Example

Take H ∼= C[{0, 1}]⊗3, the quantum Hamming space for three qubits.
X ,Y ,Z , I ∈ M2(C), so a 1-qubit error caused by Y looks like

E ∝ (=could)Y ⊗ I ⊗ I + I ⊗ Y ⊗ I + I ⊗ I ⊗ Y .

(A 3-qubit error would have some combination of X ,Y , or Z in all
positions and I in none.)
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Quantum Error Detection Condition

Let
E ∈ Vt , |ψ⟩ ∈ C ⊆ Hd .

If
PCE |ψ⟩ ∝ |ψ⟩ ∀ |ψ⟩ ∈ C,E ∈ Vt

then C detects errors in Vt .

Let’s take a version of this condition more useful for making precise
computations.

Define a linear function
ϵ : Vt → C

so that
PCEPC = ϵ(E )PC ∀ E ∈ Vt .
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A General Error Operator

Cases for Quantum Errors

Consider the case of PCEPC = ϵ(E )PC where PCEPC = 0.
Our successful detection of E is guaranteed. We started with
PC |ψ⟩ ∈ C but now we have EPC |ψ⟩ ⊥ C.
But what if E ∝ I ? Then PCE |ψ⟩ ∝ PC |ψ⟩ ∈ C always.

An arbitrary error operator is a linear combination of error which is strictly
detectable and error which impacts only global phase.

Consider a strictly detectable error F such that FP |ψ⟩ ⊥ C and an
inconsequential error ϵ(E )I . Then an arbitrary error E can be written as
E = F + ϵ(E )I .

In order to guarantee the detection of E, we have to subtract the portion of
E ∝ I in the superposition sense. 11/16
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Slopes as Vector-Valued Eigenvalues

Consider a pre-selected slope ϵ for single error E relative to a one
dimensional code containing the state |ψ⟩.

We have
dim C = 1, PC = |ψ⟩ ⟨ψ|.

Notice that

PCEPC= ϵ(E )PC

= |ψ⟩ ⟨ψ|E |ψ⟩ ⟨ψ|
= ⟨ψ|E |ψ⟩ |ψ⟩ ⟨ψ|

=⇒ ϵ(E ) = ⟨ψ|E |ψ⟩ .
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Slopes as Vector-Valued Eigenvalues

Suppose we have a d-dimensional code

C = span{|ψ0⟩ , . . . , |ψd⟩}

with orthonormal basis states |ψ0⟩ through |ψd⟩ and an error space

Vt = span{I ,E0, . . . ,Ek},V∗t = Vt

s.t.
|ψi ⟩ ⊥ E |ψj⟩ ∀ E ∈ Vt , i ̸= j ⇐⇒ ⟨ψi |Eℓ |ψj⟩ = ϵ(Eℓ)δij

⇐⇒ PCEℓPC = ϵ(Eℓ)PC .
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Slopes as Vector-Valued Eigenvalues

C = span{|ψ0⟩ , . . . , |ψd⟩}

Vt = span{I ,E0, . . . ,Ek}, E = E ∗∀ E ∈ Vt

To each |ψi ⟩ ,Ej , there is an associated scalar ϵi (Ej) = ⟨ψi |Ej |ψi ⟩.
To each |ψi ⟩, there is an associated linear function ϵi , with the vector
representation

ϵ⃗i (E ) =

⟨ψi |E1 |ψi ⟩
...

⟨ψi |Ek |ψi ⟩

 .
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Applying These Ideas

Seeking a compatible slope betwixt one-dimensional codes to make a
code of dimension ≤ d

Investigating codes not built on a subspace with commutative error

Exploring quantum metric spaces with isometry groups possessing nice
symmetries

Using some subset of the above ideas to find bounds on codes in
particular families of metric spaces
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Thank you!
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