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Abstract

We delve into how sum-product games motivate the definition of a
sum-product graph. We see that these graphs are largely dominated by
cycles and which leads to questions about their graphical structure, such
as finding their genus. We also look at generating K2,n subgraphs found
within sum-product graphs and what they have to say about the overall
structure of sum-product graphs.

Introduction

In our summer research, our aim was to go find solutions for the sum-product
game and in the process of doing so, we were led to a beautiful, graphical
representation of the game. In this paper, we leave behind the game itself to
instead look at the properties of the sum-product graphs generated by the game.

This paper aims to parse the interconnected web of sum nodes and product
nodes found within the central region of these graphs. We look at why this is
the case, as well as identify graph properties that may help pin down the states
of sum-product graphs at various sizes, like genus or important subgraphs.

1 Context

Sum-product graphs are a result of a game outlined in a 1979 column by Martin
Gardner in Scientific American1.

For the game, a pair of positive integers is chosen within the range of 2 to n,
not necessarily distinct. Then one person is given the product while the other is
given the sum. Both players then proceed to try and guess the pair of numbers
they were given. At every turn, they reveal whether or not they know the two
integers. The game ends only when one of the players reveals they know the
two integers. It turns out this game can be represented as a graph.

1Here is a link to a discussion on this game, courtesy of Torsten Sillke.
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1.1 The games

Before looking at the graphs and their properties, we should first look at a few
example games where S is the player who knows the sum and person P is given
the product. These examples will be referring to the following subset of the
graph where n = 8. 2

S7 P12P10 S8 P16 S10 P24 S11 P30

P28P21

P25

P15

S4P4

Example. Suppose the integer pair given is (2,2).

S4P4
2

2

Here S and P immediately know what each other’s numbers are since the
only way to get either the product or sum of 4 is via the integer pair (2,2). As
a result, the dialogue is composed of a single line:

S: Yes, I know what your number is.
S wins here since the person with the sum always starts first. This was a

rather short example, but our next example will be a bit longer.

Example. Now suppose our integer pair is (4,6). S has the number 10 marked
in yellow and P has the number 24 marked in green.

2Note that in general, sum nodes will be circular and/or pink whereas product nodes will
be either light blue and/or square. Sum node labels will always begin with an S and product
node labels will always begin with a P. In the following examples, green and yellow have been
used to highlight the nodes of interest.
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S7 P12P10 S8 P16 S10 P24 S11 P30

P28P21

P25

P15

6

4

Unlike the previous case where the sum was only connected to one product
node, here S does not know which of the 4 possible product nodes (P15, P21,
P24, P25) P could have.

S: No, I don’t know what your number is.
Similarly, P also does not know which of the two sums, 10 or 11, S could

have. For both sums, S10 and S11, the product node P24 is connected to, the
sums would be unable to tell which of the many products nearby is P’s number.

P: No, I don’t know what your number is.
Since P also doesn’t know what number person S has, S knows that P’s

number cannot be either 21 or 25. If P were to have either of these numbers
they would immediately know what the number of the sum is and would have
said as such. However, there are two more product nodes connected to the S’s
sum node these being S16 and S24. If person P had either of these numbers
they would give the same response.

S: No, I don’t know what your number is.
At this point, the tides of the game turn in P’s favour. P notices that if S

were to have the number 11, they would have said ”Yes” in the previous round.
The sum node S11 is only connected to one product node that is connected to

more than one sum node, that product node being P24. For all the other product
nodes S11 is connected to, the product person would immediately determine that
their partner’s sum node is S11. Since P knows that person S was unable to
deduce this, it means S cannot be 11 and must have the number 10.

P: Yes, I know what your number is.
In this game, P has won.

1.2 Observer

There is a third role in this game, the observer. The observer only gets to see
the conversation between S and P and nothing else.

In the first example, we gave with the pair (2,2) the observer would see just
the singular ”Yes”. For the next example, the observer would see ”No”, ”No”,
”No”, and ”Yes”.

Notation. We can write these answers instead as just Y (0 N before Y) and
NNNY (3 N before Y).
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Figure 1: Graph for when n = 25, i.e. G(25). Notice how cluttered the diagram
is despite n being relatively small.

A question we can ask is if the observer can identify the original integer pair
given to S and P with just their responses. However, this is not a question that
will be answered in this write-up. The observer and their role will be covered
in more detail by Mariam Abu-Adas and by Yuanyuan Shen in their write-ups.

2 Cycles

It turns out, although for small n like n = 8 the graphs are quite simple; every
edge (which corresponds to an integer pair) starts a game that has a definite
end. However, once n grows large enough, every game generated by an edge
might no longer end. This is because of the cycles in these graphs. The first
cycle appears when n = 10 and it has been displayed below.
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S11

P30

S13

P36S12

P18

S9

P20 P30

P24

When the edge starting off the game is caught in a cycle, the game has no
end since the continuous ”no” answers are possible with any connected node
within the cycle. this is not necessarily true for edges like the one between S11
and P24, only edges like those between S11 and P18 would do this.

As n grows larger, these graphs become dominated by cycles, with most sum
nodes eventually connecting into a cycle. Proof of this will be shown in Theorem
2.1.

The generated graphs for even n = 25 are cluttered; it is difficult to discern
the centre of the graph, G(25) as seen in Figure 1.

Notation. G(n) is the graph generated when the max integer value is n.

As mentioned before, it can be shown that almost every sum node will
eventually connect into a cycle, more explicitly:

Theorem 2.1. In a graph G(n), every sum node with value greater than or
equal to 14 will eventually3 connect into a cycle for a sufficiently large n.

Proof. There are two possible cases that will need to be looked at separately.
We will use induction in both to show how sum nodes link 4 to smaller valued
sum nodes.

Base case: In G(12) (refer to Figure 2) we will see that every sum node,
s0 ≥ 14 will be 2 steps away from two different sum nodes with lower values.
Additionally, since the path P24 to P10 is stable and cannot change (alongside
other stable, floating paths like S2-P2, P8-S6-P9, S5-P6)5, the only sum nodes

3in the sense of increasing the value of n
4Using the term connect or link is not technically correct since no two sum nodes can be

neighbours, but for the sake of brevity in this proof for two sum nodes to be connected/linked
will mean that the two sum nodes share a product node neighbour.

5This is because the numbers involved are so small that you can manually check all of their
possible connections and see that they remain unchanged
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Figure 2: G(12), base case for Theorem 2.1

with a value smaller than the sum node, s0, can connect to are those that are
part of a cycle.

Inductive hypothesis: Every sum-node s∗ < s0, given sufficiently large n is
connected to a cycle.

All we need to do is ensure that every sum node will eventually have two
other sum nodes with smaller values two edges away.

Case 1: Sum node’s value is even. Let the sum node s0 = 2a ≥ 14 where
a ∈ Z and let n = n0 for this graph, G(n).

s0

s0 p0

n = n0

n ≥ 2a− 2

2a − 2

2

s0 p0
2a − 2

2

a− 1

4

s1

n ≥ 2a− 2

If we increase n such that n ≥ 2a − 2 then we can guarantee that n is
connected to the product node, p0 = 2(2a − 2) via the edge (2, 2a − 2). This
product is then connected to a sum node with a lower value, s1, via the edge
(a−1, 4). We need to check that s0 > s1 is indeed the case. From the assumption
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s0 ≥ 14:
a > 3

2a > a+ 3

2a > a− 1 + 4

s0 > s1

s0 p0
2a − 2

2

a− 1

4
s1

n ≥ 2a− 2

p0

2a −
4

4

a− 2

8
s2

s0 is also connected to a product node, p1 via the edge (2a − 4, 4). Using
the same idea from before we see that p1 is connected to another sum node s2.
Once again let us check whether s0 > s2:

a > 6

2a > a+ 6

s0 > s2

Now we need to check the odd case.
Case 2: Sum node’s value is odd. Let the sum node s0 = 2a+ 1 ≥ 14 where

a ∈ Z and let n = n0 for this graph, G(n).
Since the main proof idea is identical, we will only be showing the diagram-

matic proof of smaller nodes that s0 will connect to given n large enough as well
as checks to make sure the bound s0 > 14 is enough to ensure extra two sum
nodes.

s0 p0
2a − 2

3

a− 1

6
s1

n ≥ 2a− 2

p0

2a −
4

5

a− 2

10
s2

Checking s0 > s1:
a > 4

2a+ 1 > a+ 5
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Figure 3: G(15), the first non-planar sum-product graph

s0 > s1

Checking s0 > s2:
a > 7

2a+ 1 > a+ 8

s0 > s2

This means every sum node is ”connected” to (or two edges away from) two
other smaller valued sum nodes.

3 Graph genus

There are various ways to understand what exactly is going on within these
graphs and one such way is to see whether or not you can draw the graph on
a sheet of paper i.e. check whether it is a planar graph. We can then broaden
the scope of our investigation and look for the genus of these graphs in general.

3.1 Planar graphs

The more technical definition of what it means to be a planar graph is:

Definition 3.1. Planar graph is a graph that can be embedded in the plane.

Although the first few graphs like G(10) are all planar, however for G(15),
as seen in Figure 3, this is no longer true. Note that because of the rules of the
original game, every graph G(n) ⊂ G(n + 1), which means that if G(15), then
every following sum-product graph will also be non-planar.

To prove that G(15) is the first non-planar graph we need Kuratowski’s
Theorem.
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Theorem 3.2. Kuratowski’s Theorem A finite graph is planar if and only
if it does not contain a subgraph that is a subdivision of the complete graph K5

or the complete bipartite graph K3,3 (utility graph)[1].

Here they mention the term subdivsion. For an edge that simply means
taking the edge and then dividing it into two new edges with a vertex connecting
them in middle, as shown below, the green circle representing the new vertex.

Definition 3.3. Subdivision of a graph G is a graph resulting from subdivid-
ing the edges of G.

Definition 3.4. The reverse of subdividing an edge is called smoothing.

Note that the addition of leaves or removal of leaves (vertices with degree 1)
will not affect a graph’s genus. With these tools in hand we can finally begin
proving this statement.

Proposition 3.5. G(15) is the first non-planar sum-product graph.

Proof. There are two things we need to show here:

• G(14) is planar

• G(15) is non-planar

Showing that G(14), Figure 4, is planar is relatively straightforward. All we
need to show is that G(14) can be drawn without any edge crossings. That be-
ing said these diagrams are still difficult to parse due to the number of vertices
present. Upon repeatedly smoothing out G(14) and removing its leaves we get
the graph:
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Figure 4: G(14), the last planar graph

S11

S16 S17

S13S14

P36

This clearly has no edge crossings and is therefore planar. We can do a similar
thing for G(15), the smoothed out graph seen in Figure 5.

Using the smoothed G(15) we find the subgraph shown below. This subgraph
is a subdivision of the utility graph since we can smoothen out the node S16 to
get a straight edge from S11 to S17.
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Figure 5: Smoothened G(15)

S13 S11 S18

S14 S17P36

S16

By Kuratowski’s Theorem, G(15) must be non-planar.

3.2 Genus of sum-product graphs

Checking for planarity is a special case of checking a graph’s genus.

Definition 3.6. A graph G’s genus is the minimal integer n such that it can
be embedded on a sphere with n handles.

Notation. γ(G) is the genus of graph G.

This means a planar graph is a graph with genus 0 since it can be drawn
on the plane without any crossings. A natural question to then ask is what the
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genus of an arbitrary sum-product graph G(n) is. This is not quite as simple as
proving certain sum-product graphs are non-planar. Finding a graph’s genus is
an NP-hard problem [2]. While there are general bounds, as seen in equation
3.1 [2], they require knowing the number of vertices v and edges e. Determining
these values for sum-product graphs is not so simple since counting the number
of product nodes requires knowledge of primes and how they are distributed.

γ(G) ≥
⌈
1− v

2
+

e

4

⌉
(3.1)

Another option would be to identify subgraphs whose genus is known such
as the complete bipartite graphs, Km,n.

γ(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
(3.2)

4 Diamonds

Trying to identify or construct possible complete bipartite subgraphs leads one
to the world of Diophantine equations. This can get complicated whenm,n ≥ 3,
but when m = 2 it is possible to identify such structures in these graphs; m and
n here refer to the number of sum nodes and product nodes respectively.

It turns out all possible sum-product K2,n subgraphs can be generated by
using a simple algorithm.

4.1 Generating K2,n subgraphs

To find this algorithm we need to first look at what numbers a possible K2,n

subgraph would be composed of. From there we can work backwards to find
what our generating numbers should look like and what properties they should
have.

p1 pi pn

2j

2m

j +
k1

j − k1

j +
knj −

kn

m
+ q1m − q1

m+ qn

m− qn
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Here we have two sum nodes S1, S2 and we let them equal 2j and 2m6

respectively. Note that j and m are not necessarily integers, they could instead
be positive multiples of 1

2 . Similarly, ki and qi may also be 1
2 . Additionally,

since this is a sum-product graph j > ki and m > qi for all i.
Looking at the product node pi,

pi = (j − ki)(j + ki) = (m− qi)(m+ qi)

= j2 − k2i = m2 − q2i

Rearranging these equations we get

j2 −m2 = k2i − q2i for all i

Let

z = j2 −m2

r = j +m

s = j −m =
z

r
ti = ki + qi

Notice that these new variables, z, r, s, ti can be multiples of 1
4 . Finally, we

define our generating variables.

A = gcd(r, s, t1, · · · , tn)

Bi = gcd(
r

A
,
ti
A
)

Cij = gcd(
ti
A
,
tj
A
) for i ̸= j

D =
r

A
∏
i

Bi

Ei =
ti

Bi

∏
j

Cij

These variables have all been constructed so that the previous set of variables
can be gotten back. To begin generating these subgraphs we can assign values
to A,Bi, Cij , D,Ei. There are some restrictions on the values we are able to
assign to these elements because of how we defined them.

• A can be any number

• for all i, j Bi, Cij cannot have a shared common factor

6This m is different from the m used to denote the number of sum nodes in the bipartite
subgraph.
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• D,Ei need to be co-prime

• Check D
∏
j

Bj > BiEi

∏
j

Cij for all i, otherwise reorder them

• Ensure BiEi

∏
j

Cij ̸= BjEj

∏
i

Cij and BiDEi ̸= BjDEj for i ̸= j

• Ensure BiEi

∏
j

Cij ̸= BiDEi for all i

p1 pi pn

2j

2m

a1

b1

an

bn

c1

d1

cn

dn

Now using these A,Bi, Cij , D,Ei we can get back our original edge pairs.

r = AD
∏
i

Bi

ti = ABiEi

∏
j

Cij

z = AD
∏
i

(BiEi

∏
j

Cij)

s =
z

r

ui =
z

ti

ai = r − s+ ti − ui

bi = r − s− ti + ui

ci = r + s+ ti + ui

di = r + s− ti − ui

By doing some small-scale algebra we are back to the original diamond we
started with.
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4.2 Diamonds

These structures can also inform us about other aspects of a sum-product
graph’s structure, especially in the case where n = 2.

Definition 4.1. A diamond refers to a K2,2 subgraph.

Identifying where these diamonds are located, particularly those with the
highest valued sum nodes seems to point to the boundary of where cycles begin
to end and where edges start to generate games that are no longer infinite.
We have written up code to help identify all the diamonds and visualise them
in these sum-product graphs and encourage you to play around with the code
yourself.

5 Future

This research has led us to some unexpected discoveries, diamonds being one,
however, this is far from the end. There are still a lot of unanswered questions
about the genus of a sum-product graph. Although we were able to identify
K2,m subgraphs, we can only do so in the case where m = 2 not n. It would
be interesting to see if other types of subgraphs could be found; contained
within these vast, sum-product graphs. There are other graph properties worth
exploring such as their radii or their diameters.
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