
Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Solving Exact Cover Problems

Alexander Neuschotz

UC Davis

August 12, 2021



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Tiling Problems

Figure: Aztec Diamond of Order 4

Figure: Tile Types



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Tiling Problems

Figure: Aztec Diamond of Order 4

Figure: Tile Types



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Set Covers

• Start with a set U = {1, . . . , n} for some n ∈ Z+.

• Consider a family of subsets S ⊆ U.

• Given (U,S), a set cover is a subfamily S ′ ⊆ S such that⋃
s′∈S ′ s = U.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Set Covers

• Start with a set U = {1, . . . , n} for some n ∈ Z+.

• Consider a family of subsets S ⊆ U.

• Given (U,S), a set cover is a subfamily S ′ ⊆ S such that⋃
s′∈S ′ s = U.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Set Covers

• Start with a set U = {1, . . . , n} for some n ∈ Z+.

• Consider a family of subsets S ⊆ U.

• Given (U, S), a set cover is a subfamily S ′ ⊆ S such that⋃
s′∈S ′ s = U.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Set Cover Problems

• There are a few types of problems one might consider with set
covers given (U,S).

1. Does a non-trivial S ′ exist?
2. How many set covers exist?
3. Does a pair-wise disjoint set cover exist?

• An exact set cover (or simply exact cover) is a pairwise
disjoint set cover.

• Here, we are interested in determining how many exact covers
there are of a given (U,S).



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Set Cover Problems

• There are a few types of problems one might consider with set
covers given (U,S).

1. Does a non-trivial S ′ exist?

2. How many set covers exist?
3. Does a pair-wise disjoint set cover exist?

• An exact set cover (or simply exact cover) is a pairwise
disjoint set cover.

• Here, we are interested in determining how many exact covers
there are of a given (U,S).



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Set Cover Problems

• There are a few types of problems one might consider with set
covers given (U,S).

1. Does a non-trivial S ′ exist?
2. How many set covers exist?

3. Does a pair-wise disjoint set cover exist?

• An exact set cover (or simply exact cover) is a pairwise
disjoint set cover.

• Here, we are interested in determining how many exact covers
there are of a given (U,S).



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Set Cover Problems

• There are a few types of problems one might consider with set
covers given (U,S).

1. Does a non-trivial S ′ exist?
2. How many set covers exist?
3. Does a pair-wise disjoint set cover exist?

• An exact set cover (or simply exact cover) is a pairwise
disjoint set cover.

• Here, we are interested in determining how many exact covers
there are of a given (U,S).



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Set Cover Problems

• There are a few types of problems one might consider with set
covers given (U,S).

1. Does a non-trivial S ′ exist?
2. How many set covers exist?
3. Does a pair-wise disjoint set cover exist?

• An exact set cover (or simply exact cover) is a pairwise
disjoint set cover.

• Here, we are interested in determining how many exact covers
there are of a given (U,S).



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Set Cover Problems

• There are a few types of problems one might consider with set
covers given (U,S).

1. Does a non-trivial S ′ exist?
2. How many set covers exist?
3. Does a pair-wise disjoint set cover exist?

• An exact set cover (or simply exact cover) is a pairwise
disjoint set cover.

• Here, we are interested in determining how many exact covers
there are of a given (U, S).



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Tiling Problems As Exact Cover Problems

Figure: Aztec Diamond of Order 4

Figure: Tile Types



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Tiling Problems As Exact Cover Problems

Figure: Aztec Diamond of Order 4

Figure: Tile Types



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Tiling Problems As Exact Cover Problems

Figure: Enumerated Region

Tiles =
{(1, 2), (1, 4), (2, 5), (3, 4), ...}



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Tiling Problems As Exact Cover Problems

• The set of all numbers used to enumerate the region is our
universe U and the set of tiles is our family S .

• The question of finding an exact cover then becomes
isomorphic to the question of how to perfectly tile our region
with non-overlapping tiles.

• So, given a region that we can enumerate and tile types that
we can use to find tiles, solving the exact cover problem that
arises will tell us exactly how many perfect tilings of that
region are possible with those given tile types.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Tiling Problems As Exact Cover Problems

• The set of all numbers used to enumerate the region is our
universe U and the set of tiles is our family S .

• The question of finding an exact cover then becomes
isomorphic to the question of how to perfectly tile our region
with non-overlapping tiles.

• So, given a region that we can enumerate and tile types that
we can use to find tiles, solving the exact cover problem that
arises will tell us exactly how many perfect tilings of that
region are possible with those given tile types.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Tiling Problems As Exact Cover Problems

• The set of all numbers used to enumerate the region is our
universe U and the set of tiles is our family S .

• The question of finding an exact cover then becomes
isomorphic to the question of how to perfectly tile our region
with non-overlapping tiles.

• So, given a region that we can enumerate and tile types that
we can use to find tiles, solving the exact cover problem that
arises will tell us exactly how many perfect tilings of that
region are possible with those given tile types.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Ordering Tile Placement

• Regardless of method, it is important to pick an ordering for
the placement of tiles.

Figure: Aztec Diamond of Order 1

• Suppose we are tiling the above region with the tiles (1, 2)
and (3, 4). We don’t want (1, 2) ∪ (3, 4) and (3, 4) ∪ (1, 2) to
count as two different perfect tilings since they are equal to
the same cover set: {(1, 2), (3, 4)}



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Ordering Tile Placement

• Regardless of method, it is important to pick an ordering for
the placement of tiles.

Figure: Aztec Diamond of Order 1

• Suppose we are tiling the above region with the tiles (1, 2)
and (3, 4). We don’t want (1, 2) ∪ (3, 4) and (3, 4) ∪ (1, 2) to
count as two different perfect tilings since they are equal to
the same cover set: {(1, 2), (3, 4)}



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Ordering Tile Placement

• To avoid this issue, we impose the following system: given a
partial tiling, we look fro the smallest integer that is not
covered and we cover that next.

• With this system, we would have required (1, 2) to be placed
before (3, 4).



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Ordering Tile Placement

• To avoid this issue, we impose the following system: given a
partial tiling, we look fro the smallest integer that is not
covered and we cover that next.

• With this system, we would have required (1, 2) to be placed
before (3, 4).



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

The Näıve Approach

∅

(1,2)

(1,2,3,4)

(1,2,3,4,5,6) (1,2,3,4,5,9)

(1,2,3,7)

(1,2,3,4,5,7) (1,2,3,4,7,8)

(1,4)

(1,2,4,5)

(1,2,3,4,5,7)



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

The Näıve Approach

• If you were to go complete this tree and count the number of
paths to U, you would solve the exact cover problem.

• The main problem is that this blows up really quickly. In fact,
this method has a time cost that is exponential in the area of
the region being tiled.

• Solving exact cover problems is always going to be
exponential, but we can do better than this approach with a
method called dynamic programming.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

The Näıve Approach

• If you were to go complete this tree and count the number of
paths to U, you would solve the exact cover problem.

• The main problem is that this blows up really quickly. In fact,
this method has a time cost that is exponential in the area of
the region being tiled.

• Solving exact cover problems is always going to be
exponential, but we can do better than this approach with a
method called dynamic programming.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

The Näıve Approach

• If you were to go complete this tree and count the number of
paths to U, you would solve the exact cover problem.

• The main problem is that this blows up really quickly. In fact,
this method has a time cost that is exponential in the area of
the region being tiled.

• Solving exact cover problems is always going to be
exponential, but we can do better than this approach with a
method called dynamic programming.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Dynamic Programming
• Suppose we have a partial tiling of a region that can be

achieved in multiple (m) ways ways:

• For each way of achieving that partial tiling, there is a branch
of n options for the next tile.

Figure: Partial Tiling of an Aztec
Diamond of Order 4

Figure: Option 1

Figure: Option 2



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Dynamic Programming
• Suppose we have a partial tiling of a region that can be

achieved in multiple (m) ways ways:
• For each way of achieving that partial tiling, there is a branch

of n options for the next tile.

Figure: Partial Tiling of an Aztec
Diamond of Order 4

Figure: Option 1

Figure: Option 2



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Dynamic Programming
• Suppose we have a partial tiling of a region that can be

achieved in multiple (m) ways ways:
• For each way of achieving that partial tiling, there is a branch

of n options for the next tile.

Figure: Partial Tiling of an Aztec
Diamond of Order 4

Figure: Option 1

Figure: Option 2



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Dynamic Programming
• Suppose we have a partial tiling of a region that can be

achieved in multiple (m) ways ways:
• For each way of achieving that partial tiling, there is a branch

of n options for the next tile.

Figure: Partial Tiling of an Aztec
Diamond of Order 4

Figure: Option 1

Figure: Option 2



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Dynamic Programming
• Suppose we have a partial tiling of a region that can be

achieved in multiple (m) ways ways:
• For each way of achieving that partial tiling, there is a branch

of n options for the next tile.

Figure: Partial Tiling of an Aztec
Diamond of Order 4

Figure: Option 1

Figure: Option 2



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Dynamic Programming

• Rather than branching off m times, we can keep track of the
fact that there are m ways to achieve the partial tiling and
note that that means there are m ways to achieve each of the
n next partial tilings.

• In this way, we have “merged” the m paths together.

• If we start merging, not at the 24th step, but from the very
beginning, we can minimize the amount of repeat work.

• This method is called dynamic programming and it has a time
cost that is exponential in the width of the region, which is a
lot better than in the area.

• Of course, there is a space trade-off, so this is supposing that
time is more valuable than space.

• This will be central to my program.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Dynamic Programming

• Rather than branching off m times, we can keep track of the
fact that there are m ways to achieve the partial tiling and
note that that means there are m ways to achieve each of the
n next partial tilings.

• In this way, we have “merged” the m paths together.

• If we start merging, not at the 24th step, but from the very
beginning, we can minimize the amount of repeat work.

• This method is called dynamic programming and it has a time
cost that is exponential in the width of the region, which is a
lot better than in the area.

• Of course, there is a space trade-off, so this is supposing that
time is more valuable than space.

• This will be central to my program.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Dynamic Programming

• Rather than branching off m times, we can keep track of the
fact that there are m ways to achieve the partial tiling and
note that that means there are m ways to achieve each of the
n next partial tilings.

• In this way, we have “merged” the m paths together.

• If we start merging, not at the 24th step, but from the very
beginning, we can minimize the amount of repeat work.

• This method is called dynamic programming and it has a time
cost that is exponential in the width of the region, which is a
lot better than in the area.

• Of course, there is a space trade-off, so this is supposing that
time is more valuable than space.

• This will be central to my program.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Dynamic Programming

• Rather than branching off m times, we can keep track of the
fact that there are m ways to achieve the partial tiling and
note that that means there are m ways to achieve each of the
n next partial tilings.

• In this way, we have “merged” the m paths together.

• If we start merging, not at the 24th step, but from the very
beginning, we can minimize the amount of repeat work.

• This method is called dynamic programming and it has a time
cost that is exponential in the width of the region, which is a
lot better than in the area.

• Of course, there is a space trade-off, so this is supposing that
time is more valuable than space.

• This will be central to my program.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Dynamic Programming

• Rather than branching off m times, we can keep track of the
fact that there are m ways to achieve the partial tiling and
note that that means there are m ways to achieve each of the
n next partial tilings.

• In this way, we have “merged” the m paths together.

• If we start merging, not at the 24th step, but from the very
beginning, we can minimize the amount of repeat work.

• This method is called dynamic programming and it has a time
cost that is exponential in the width of the region, which is a
lot better than in the area.

• Of course, there is a space trade-off, so this is supposing that
time is more valuable than space.

• This will be central to my program.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Dynamic Programming

• Rather than branching off m times, we can keep track of the
fact that there are m ways to achieve the partial tiling and
note that that means there are m ways to achieve each of the
n next partial tilings.

• In this way, we have “merged” the m paths together.

• If we start merging, not at the 24th step, but from the very
beginning, we can minimize the amount of repeat work.

• This method is called dynamic programming and it has a time
cost that is exponential in the width of the region, which is a
lot better than in the area.

• Of course, there is a space trade-off, so this is supposing that
time is more valuable than space.

• This will be central to my program.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Motivation

• A mathematician named David desJardins developed a
program that can tile a region given tile types and has been
working with a mathematician named Jim Propp who studies
tiling problems.

• David’s code is maximally efficient, but there are a couple of
problems:

1. It is not generalized to solve exact cover problems in general.
2. It can be made to be more user-friendly. (e.g. It doesn’t have

a cover script.)



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Motivation

• A mathematician named David desJardins developed a
program that can tile a region given tile types and has been
working with a mathematician named Jim Propp who studies
tiling problems.
• David’s code is maximally efficient, but there are a couple of

problems:

1. It is not generalized to solve exact cover problems in general.
2. It can be made to be more user-friendly. (e.g. It doesn’t have

a cover script.)



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Motivation

• A mathematician named David desJardins developed a
program that can tile a region given tile types and has been
working with a mathematician named Jim Propp who studies
tiling problems.
• David’s code is maximally efficient, but there are a couple of

problems:

1. It is not generalized to solve exact cover problems in general.

2. It can be made to be more user-friendly. (e.g. It doesn’t have
a cover script.)



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Motivation

• A mathematician named David desJardins developed a
program that can tile a region given tile types and has been
working with a mathematician named Jim Propp who studies
tiling problems.
• David’s code is maximally efficient, but there are a couple of

problems:

1. It is not generalized to solve exact cover problems in general.
2. It can be made to be more user-friendly. (e.g. It doesn’t have

a cover script.)



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Motivation

• He gave me access to his code and I worked on a program,
which I call the Exact Cover Problem Solver (ECPS), which
takes the dynamic programming aspect of his program and
effectively does two things:

1. It converts a tiling problem to an exact cover problem.
2. It solves exact cover problems.

• The idea was to write out the program in Python and to swap
out the computationally intensive part (the dynamic
programming) for David’s generalized exact cover solver that
he would write in C + + for efficiency.

• The program could then be assembled in Cython.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Motivation

• He gave me access to his code and I worked on a program,
which I call the Exact Cover Problem Solver (ECPS), which
takes the dynamic programming aspect of his program and
effectively does two things:

1. It converts a tiling problem to an exact cover problem.

2. It solves exact cover problems.

• The idea was to write out the program in Python and to swap
out the computationally intensive part (the dynamic
programming) for David’s generalized exact cover solver that
he would write in C + + for efficiency.

• The program could then be assembled in Cython.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Motivation

• He gave me access to his code and I worked on a program,
which I call the Exact Cover Problem Solver (ECPS), which
takes the dynamic programming aspect of his program and
effectively does two things:

1. It converts a tiling problem to an exact cover problem.
2. It solves exact cover problems.

• The idea was to write out the program in Python and to swap
out the computationally intensive part (the dynamic
programming) for David’s generalized exact cover solver that
he would write in C + + for efficiency.

• The program could then be assembled in Cython.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Motivation

• He gave me access to his code and I worked on a program,
which I call the Exact Cover Problem Solver (ECPS), which
takes the dynamic programming aspect of his program and
effectively does two things:

1. It converts a tiling problem to an exact cover problem.
2. It solves exact cover problems.

• The idea was to write out the program in Python and to swap
out the computationally intensive part (the dynamic
programming) for David’s generalized exact cover solver that
he would write in C + + for efficiency.

• The program could then be assembled in Cython.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Motivation

• He gave me access to his code and I worked on a program,
which I call the Exact Cover Problem Solver (ECPS), which
takes the dynamic programming aspect of his program and
effectively does two things:

1. It converts a tiling problem to an exact cover problem.
2. It solves exact cover problems.

• The idea was to write out the program in Python and to swap
out the computationally intensive part (the dynamic
programming) for David’s generalized exact cover solver that
he would write in C + + for efficiency.

• The program could then be assembled in Cython.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 0: User Input
• The ECPS takes in input from the user in the form of ASCII

art of regions and tile types with hashtags for tileable units
and anything else for non-tileable units.

Figure: Input For The ECPS



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 1: Enumeration

• The region gets converted into a list of lists, (As do each of
the tiles, but separately).

• This list of lists provides a coordinate system whereby a
symbol in the region is at (x , y) if it is x down steps and y
steps right from the top left symbol.

• The region gets sent to a function that assigns a number to
each of the hashtags, starting from 1 and not skipping
numbers, and returns a coordinate dictionary, or cdict, whose
keys are coordinates that contain hashtags and whose values
are the numbers associated with those hashtags.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 1: Enumeration

• The region gets converted into a list of lists, (As do each of
the tiles, but separately).

• This list of lists provides a coordinate system whereby a
symbol in the region is at (x , y) if it is x down steps and y
steps right from the top left symbol.

• The region gets sent to a function that assigns a number to
each of the hashtags, starting from 1 and not skipping
numbers, and returns a coordinate dictionary, or cdict, whose
keys are coordinates that contain hashtags and whose values
are the numbers associated with those hashtags.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 1: Enumeration

• The region gets converted into a list of lists, (As do each of
the tiles, but separately).

• This list of lists provides a coordinate system whereby a
symbol in the region is at (x , y) if it is x down steps and y
steps right from the top left symbol.

• The region gets sent to a function that assigns a number to
each of the hashtags, starting from 1 and not skipping
numbers, and returns a coordinate dictionary, or cdict, whose
keys are coordinates that contain hashtags and whose values
are the numbers associated with those hashtags.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 1: Enumeration

• For example, numbering up-to-down, left-to-right, numbering
the region from step 0 would return to {(0, 4) : 1, (0, 5) :
2, (1, 3) : 3, (1, 4) : 4, (1, 5) : 5, (1, 6) : 6, . . .}.

• This gives us our universe for the exact cover problem: the set
of values of this cdict.

• The decision to go from up-to-down, left-to-right works for
this particular region, but is not necessarily the best option for
regions in general. Right now, the code only numbers in this
way, but I aim to fix that. I may address this at the end if
there is time.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 1: Enumeration

• For example, numbering up-to-down, left-to-right, numbering
the region from step 0 would return to {(0, 4) : 1, (0, 5) :
2, (1, 3) : 3, (1, 4) : 4, (1, 5) : 5, (1, 6) : 6, . . .}.
• This gives us our universe for the exact cover problem: the set

of values of this cdict.

• The decision to go from up-to-down, left-to-right works for
this particular region, but is not necessarily the best option for
regions in general. Right now, the code only numbers in this
way, but I aim to fix that. I may address this at the end if
there is time.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 1: Enumeration

• For example, numbering up-to-down, left-to-right, numbering
the region from step 0 would return to {(0, 4) : 1, (0, 5) :
2, (1, 3) : 3, (1, 4) : 4, (1, 5) : 5, (1, 6) : 6, . . .}.
• This gives us our universe for the exact cover problem: the set

of values of this cdict.

• The decision to go from up-to-down, left-to-right works for
this particular region, but is not necessarily the best option for
regions in general. Right now, the code only numbers in this
way, but I aim to fix that. I may address this at the end if
there is time.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2: Finding Tiles

• Each of the tile types is similarly numbered, so they have their
own cdicts.

• Choosing one tile type in particular, we look at the keys in its
cdict, which are the coordinates (x1, y1), ..., (xn, yn).

• Since the numbering started from the top left for both the
region and the tile types, there will be a tile in the top left of
the region iff each (xk , yk) in the region is a hashtag.

• In fact, we can find all possible tiles by shifting the tile type
coordinates down and to the right together and checking
whether they are all positions of hashtags in the region.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2: Finding Tiles

• Each of the tile types is similarly numbered, so they have their
own cdicts.

• Choosing one tile type in particular, we look at the keys in its
cdict, which are the coordinates (x1, y1), ..., (xn, yn).

• Since the numbering started from the top left for both the
region and the tile types, there will be a tile in the top left of
the region iff each (xk , yk) in the region is a hashtag.

• In fact, we can find all possible tiles by shifting the tile type
coordinates down and to the right together and checking
whether they are all positions of hashtags in the region.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2: Finding Tiles

• Each of the tile types is similarly numbered, so they have their
own cdicts.

• Choosing one tile type in particular, we look at the keys in its
cdict, which are the coordinates (x1, y1), ..., (xn, yn).

• Since the numbering started from the top left for both the
region and the tile types, there will be a tile in the top left of
the region iff each (xk , yk) in the region is a hashtag.

• In fact, we can find all possible tiles by shifting the tile type
coordinates down and to the right together and checking
whether they are all positions of hashtags in the region.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2: Finding Tiles

• Each of the tile types is similarly numbered, so they have their
own cdicts.

• Choosing one tile type in particular, we look at the keys in its
cdict, which are the coordinates (x1, y1), ..., (xn, yn).

• Since the numbering started from the top left for both the
region and the tile types, there will be a tile in the top left of
the region iff each (xk , yk) in the region is a hashtag.

• In fact, we can find all possible tiles by shifting the tile type
coordinates down and to the right together and checking
whether they are all positions of hashtags in the region.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2: Finding Tiles

• Taking the inputted region and the first tile type, we can
illustrate this process:

Figure: No Tile Figure: No Tile Figure: No Tile Figure: Tile

• If a potential tile passes the test, the tile is saved as a tuple
containing the numbers associated with the hashtags it
covers. So, the tile above would be (1, 2).



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2: Finding Tiles

• Taking the inputted region and the first tile type, we can
illustrate this process:

Figure: No Tile

Figure: No Tile Figure: No Tile Figure: Tile

• If a potential tile passes the test, the tile is saved as a tuple
containing the numbers associated with the hashtags it
covers. So, the tile above would be (1, 2).



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2: Finding Tiles

• Taking the inputted region and the first tile type, we can
illustrate this process:

Figure: No Tile Figure: No Tile

Figure: No Tile Figure: Tile

• If a potential tile passes the test, the tile is saved as a tuple
containing the numbers associated with the hashtags it
covers. So, the tile above would be (1, 2).



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2: Finding Tiles

• Taking the inputted region and the first tile type, we can
illustrate this process:

Figure: No Tile Figure: No Tile Figure: No Tile

Figure: Tile

• If a potential tile passes the test, the tile is saved as a tuple
containing the numbers associated with the hashtags it
covers. So, the tile above would be (1, 2).



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2: Finding Tiles

• Taking the inputted region and the first tile type, we can
illustrate this process:

Figure: No Tile Figure: No Tile Figure: No Tile Figure: Tile

• If a potential tile passes the test, the tile is saved as a tuple
containing the numbers associated with the hashtags it
covers. So, the tile above would be (1, 2).



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2: Finding Tiles

• Taking the inputted region and the first tile type, we can
illustrate this process:

Figure: No Tile Figure: No Tile Figure: No Tile Figure: Tile

• If a potential tile passes the test, the tile is saved as a tuple
containing the numbers associated with the hashtags it
covers. So, the tile above would be (1, 2).



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Solving the Cover set problem

• At this point, we have our universe U (the set of numbers
used to number the region) and our family of subsets S (the
tiles). We have successfully converted our tiling problem to an
exact cover problem.

• From this point on, a “tile” is just another word for a subset
in the family S and “tiles” is another word for S itself. We
retain the terminology for consistency with the first part of
the ECPS, but this part can, importantly, solve exact cover
problems in general, not just tiling problems.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Solving the Cover set problem

• At this point, we have our universe U (the set of numbers
used to number the region) and our family of subsets S (the
tiles). We have successfully converted our tiling problem to an
exact cover problem.

• From this point on, a “tile” is just another word for a subset
in the family S and “tiles” is another word for S itself. We
retain the terminology for consistency with the first part of
the ECPS, but this part can, importantly, solve exact cover
problems in general, not just tiling problems.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2.5: Sorting

• Each of our tiles is a now in the form of a tuple that contains
the numbers it covers. We can represent the same information
in a binary sequence of length n, where n is the dimension of
U and the i ’th position from the left is a 1 iff that tile covers i .

• The binary representation of a given tile also represents a
unique non-negative integer in base 10, so we can associate
the tile with this integer, which we call its key representation,
or key rep.

• For example, when n = 40 as above, (39, 40) would be
represented by 000...11, which is 3 in base 10.

• The ECPS creates a list of all key reps of tiles, called a key
chain.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2.5: Sorting

• Each of our tiles is a now in the form of a tuple that contains
the numbers it covers. We can represent the same information
in a binary sequence of length n, where n is the dimension of
U and the i ’th position from the left is a 1 iff that tile covers i .

• The binary representation of a given tile also represents a
unique non-negative integer in base 10, so we can associate
the tile with this integer, which we call its key representation,
or key rep.

• For example, when n = 40 as above, (39, 40) would be
represented by 000...11, which is 3 in base 10.

• The ECPS creates a list of all key reps of tiles, called a key
chain.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2.5: Sorting

• Each of our tiles is a now in the form of a tuple that contains
the numbers it covers. We can represent the same information
in a binary sequence of length n, where n is the dimension of
U and the i ’th position from the left is a 1 iff that tile covers i .

• The binary representation of a given tile also represents a
unique non-negative integer in base 10, so we can associate
the tile with this integer, which we call its key representation,
or key rep.

• For example, when n = 40 as above, (39, 40) would be
represented by 000...11, which is 3 in base 10.

• The ECPS creates a list of all key reps of tiles, called a key
chain.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2.5: Sorting

• Each of our tiles is a now in the form of a tuple that contains
the numbers it covers. We can represent the same information
in a binary sequence of length n, where n is the dimension of
U and the i ’th position from the left is a 1 iff that tile covers i .

• The binary representation of a given tile also represents a
unique non-negative integer in base 10, so we can associate
the tile with this integer, which we call its key representation,
or key rep.

• For example, when n = 40 as above, (39, 40) would be
represented by 000...11, which is 3 in base 10.

• The ECPS creates a list of all key reps of tiles, called a key
chain.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2.5: Sorting

• The ECPS creates a list of n lists, called “q-sets”, where the
i ’th list, or q-set contains all of the key reps that have a 1 in
the i ’th place.

• The program then creates a list called counts =
{0, {0 : 1}, {}, ...}.
• When we start having partial tilings, the keys of the i ’th

dictionary in counts will be the key reps for the the partial
tilings whose first 0 from the left is in the i ’th position and its
values will be how many times the partial tiling has been
achieved. The integer keeps track of perfect tilings.

• At first, our only partial tiling is the trivial one, represented by
0, of which there is 1.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2.5: Sorting

• The ECPS creates a list of n lists, called “q-sets”, where the
i ’th list, or q-set contains all of the key reps that have a 1 in
the i ’th place.

• The program then creates a list called counts =
{0, {0 : 1}, {}, ...}.

• When we start having partial tilings, the keys of the i ’th
dictionary in counts will be the key reps for the the partial
tilings whose first 0 from the left is in the i ’th position and its
values will be how many times the partial tiling has been
achieved. The integer keeps track of perfect tilings.

• At first, our only partial tiling is the trivial one, represented by
0, of which there is 1.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2.5: Sorting

• The ECPS creates a list of n lists, called “q-sets”, where the
i ’th list, or q-set contains all of the key reps that have a 1 in
the i ’th place.

• The program then creates a list called counts =
{0, {0 : 1}, {}, ...}.
• When we start having partial tilings, the keys of the i ’th

dictionary in counts will be the key reps for the the partial
tilings whose first 0 from the left is in the i ’th position and its
values will be how many times the partial tiling has been
achieved. The integer keeps track of perfect tilings.

• At first, our only partial tiling is the trivial one, represented by
0, of which there is 1.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 2.5: Sorting

• The ECPS creates a list of n lists, called “q-sets”, where the
i ’th list, or q-set contains all of the key reps that have a 1 in
the i ’th place.

• The program then creates a list called counts =
{0, {0 : 1}, {}, ...}.
• When we start having partial tilings, the keys of the i ’th

dictionary in counts will be the key reps for the the partial
tilings whose first 0 from the left is in the i ’th position and its
values will be how many times the partial tiling has been
achieved. The integer keeps track of perfect tilings.

• At first, our only partial tiling is the trivial one, represented by
0, of which there is 1.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 3: Solving the Problem

• for i in range(n):

• for key rep in counts[i ]: (i.e. for partial tiling that needs i to
be covered:)

• for key rep of tile in q-sets[i]: (i.e. for tile that can cover i :)

• if the tile is compatible with the partial tiling, sum them to
get a new partial tiling.
• Update the value of the new partial tiling.

• If it is a full tiling, update counts[0].
• If it has a hole, send it to the appropriate dict in counts as a

key with the updated value.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 3: Solving the Problem

• for i in range(n):

• for key rep in counts[i ]: (i.e. for partial tiling that needs i to
be covered:)

• for key rep of tile in q-sets[i]: (i.e. for tile that can cover i :)

• if the tile is compatible with the partial tiling, sum them to
get a new partial tiling.
• Update the value of the new partial tiling.

• If it is a full tiling, update counts[0].
• If it has a hole, send it to the appropriate dict in counts as a

key with the updated value.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 3: Solving the Problem

• for i in range(n):

• for key rep in counts[i ]: (i.e. for partial tiling that needs i to
be covered:)

• for key rep of tile in q-sets[i]: (i.e. for tile that can cover i :)

• if the tile is compatible with the partial tiling, sum them to
get a new partial tiling.
• Update the value of the new partial tiling.

• If it is a full tiling, update counts[0].
• If it has a hole, send it to the appropriate dict in counts as a

key with the updated value.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 3: Solving the Problem

• for i in range(n):

• for key rep in counts[i ]: (i.e. for partial tiling that needs i to
be covered:)

• for key rep of tile in q-sets[i]: (i.e. for tile that can cover i :)

• if the tile is compatible with the partial tiling, sum them to
get a new partial tiling.

• Update the value of the new partial tiling.
• If it is a full tiling, update counts[0].
• If it has a hole, send it to the appropriate dict in counts as a

key with the updated value.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Step 3: Solving the Problem

• for i in range(n):

• for key rep in counts[i ]: (i.e. for partial tiling that needs i to
be covered:)

• for key rep of tile in q-sets[i]: (i.e. for tile that can cover i :)

• if the tile is compatible with the partial tiling, sum them to
get a new partial tiling.
• Update the value of the new partial tiling.

• If it is a full tiling, update counts[0].
• If it has a hole, send it to the appropriate dict in counts as a

key with the updated value.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Future Work

1. Write a module that will determine the most efficient
numbering of a region.

2. David has not gotten back to Greg about the code for the
computationally intensive part, so I plan to write that up in
Cython myself.



Exact Cover Problem Dynamic Programming Solver, Part 1 Solver, Part 2 Future Work

Thank You!

• Thank you to Greg for you guidance!

• Thank you to David for your code!

• Thank you to all of you for listening!


	Exact Cover Problem
	Dynamic Programming
	Solver, Part 1
	Solver, Part 2
	Future Work

